No genome is an island: toward a 21st century agenda for evolution

Conventional 20th century evolution thinking was based on the idea of isolated genomes for each species. Any possibility of life‐history inputs to the germ line was strictly excluded by Weismann's doctrine, and genome change was attributed to random copying errors. Today, we know that many life...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2019-07, Vol.1447 (1), p.21-52
1. Verfasser: Shapiro, James A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 21
container_title Annals of the New York Academy of Sciences
container_volume 1447
creator Shapiro, James A.
description Conventional 20th century evolution thinking was based on the idea of isolated genomes for each species. Any possibility of life‐history inputs to the germ line was strictly excluded by Weismann's doctrine, and genome change was attributed to random copying errors. Today, we know that many life‐history events lead to rapid and nonrandom evolutionary change mediated by specific cellular functions. There are many ways that genomes, viruses, cells, and organisms interact to generate evolutionary variation. These include cell mergers and activation of natural genetic engineering by stress, infection, and interspecific hybridization. In addition, we know molecular mechanisms for transmitting life‐history information across generations through gametes. These discoveries require a new agenda for evolutionary theory and novel experimental designs to investigate the genomic impacts of stresses, biotic interactions, and sensory inputs coming from the environment. The review will offer some generic recommendations for enriching evolution experiments to incorporate new knowledge and find answers to previously excluded questions.
doi_str_mv 10.1111/nyas.14044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2196527515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196527515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-bad84538021767940947a02672abdf07948116e364b8ac268ab2e63f4bf945e63</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgipvTix9AAl5E6EzSNC_e5vANxjyoB08hbVPpaJuZtI5-ezM7PXgwh-Qh_Pjz8AfgFKMpDueq6bWfYooo3QNjzKmMGIvJPhgjxHkkJIlH4Mj7FUKYCMoPwShGEiHC5RjcLC18N42tDSw91E24K93k17C1G-1yqCHBvoWZadrO9VAHm2tYWAfNp626trTNMTgodOXNye6dgNe725f5Q7R4un-czxZRFiecRqnOBU1igQjmjEuKJOUaEcaJTvMChR-BMTMxo6nQGWFCp8SwuKBpIWkSpgm4GHLXzn50xreqLn1mqrCvsZ1XBEuWEJ7gJNDzP3RlO9eE7RQhCZdMEkmDuhxU5qz3zhRq7cpau15hpLbNqm2z6rvZgM92kV1am_yX_lQZAB7ApqxM_0-UWr7NnofQLwsLgD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257969294</pqid></control><display><type>article</type><title>No genome is an island: toward a 21st century agenda for evolution</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Shapiro, James A.</creator><creatorcontrib>Shapiro, James A.</creatorcontrib><description>Conventional 20th century evolution thinking was based on the idea of isolated genomes for each species. Any possibility of life‐history inputs to the germ line was strictly excluded by Weismann's doctrine, and genome change was attributed to random copying errors. Today, we know that many life‐history events lead to rapid and nonrandom evolutionary change mediated by specific cellular functions. There are many ways that genomes, viruses, cells, and organisms interact to generate evolutionary variation. These include cell mergers and activation of natural genetic engineering by stress, infection, and interspecific hybridization. In addition, we know molecular mechanisms for transmitting life‐history information across generations through gametes. These discoveries require a new agenda for evolutionary theory and novel experimental designs to investigate the genomic impacts of stresses, biotic interactions, and sensory inputs coming from the environment. The review will offer some generic recommendations for enriching evolution experiments to incorporate new knowledge and find answers to previously excluded questions.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.14044</identifier><identifier>PMID: 30900279</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biological evolution ; biosphere interactions ; Cell activation ; Copying ; Evolution ; Evolution, Molecular ; extracellular vesicles (EVs) ; Gametes ; Genetic engineering ; Genome - physiology ; Genomes ; Genomic Islands - physiology ; Humans ; infectious heredity ; Interspecific ; Interspecific hybridization ; Microbiota - physiology ; Molecular modelling ; natural genetic engineering ; virosphere contributions ; Viruses</subject><ispartof>Annals of the New York Academy of Sciences, 2019-07, Vol.1447 (1), p.21-52</ispartof><rights>2019 New York Academy of Sciences.</rights><rights>2019 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-bad84538021767940947a02672abdf07948116e364b8ac268ab2e63f4bf945e63</citedby><cites>FETCH-LOGICAL-c3574-bad84538021767940947a02672abdf07948116e364b8ac268ab2e63f4bf945e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnyas.14044$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnyas.14044$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30900279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shapiro, James A.</creatorcontrib><title>No genome is an island: toward a 21st century agenda for evolution</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Conventional 20th century evolution thinking was based on the idea of isolated genomes for each species. Any possibility of life‐history inputs to the germ line was strictly excluded by Weismann's doctrine, and genome change was attributed to random copying errors. Today, we know that many life‐history events lead to rapid and nonrandom evolutionary change mediated by specific cellular functions. There are many ways that genomes, viruses, cells, and organisms interact to generate evolutionary variation. These include cell mergers and activation of natural genetic engineering by stress, infection, and interspecific hybridization. In addition, we know molecular mechanisms for transmitting life‐history information across generations through gametes. These discoveries require a new agenda for evolutionary theory and novel experimental designs to investigate the genomic impacts of stresses, biotic interactions, and sensory inputs coming from the environment. The review will offer some generic recommendations for enriching evolution experiments to incorporate new knowledge and find answers to previously excluded questions.</description><subject>Animals</subject><subject>Biological evolution</subject><subject>biosphere interactions</subject><subject>Cell activation</subject><subject>Copying</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>extracellular vesicles (EVs)</subject><subject>Gametes</subject><subject>Genetic engineering</subject><subject>Genome - physiology</subject><subject>Genomes</subject><subject>Genomic Islands - physiology</subject><subject>Humans</subject><subject>infectious heredity</subject><subject>Interspecific</subject><subject>Interspecific hybridization</subject><subject>Microbiota - physiology</subject><subject>Molecular modelling</subject><subject>natural genetic engineering</subject><subject>virosphere contributions</subject><subject>Viruses</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1LwzAYB_AgipvTix9AAl5E6EzSNC_e5vANxjyoB08hbVPpaJuZtI5-ezM7PXgwh-Qh_Pjz8AfgFKMpDueq6bWfYooo3QNjzKmMGIvJPhgjxHkkJIlH4Mj7FUKYCMoPwShGEiHC5RjcLC18N42tDSw91E24K93k17C1G-1yqCHBvoWZadrO9VAHm2tYWAfNp626trTNMTgodOXNye6dgNe725f5Q7R4un-czxZRFiecRqnOBU1igQjmjEuKJOUaEcaJTvMChR-BMTMxo6nQGWFCp8SwuKBpIWkSpgm4GHLXzn50xreqLn1mqrCvsZ1XBEuWEJ7gJNDzP3RlO9eE7RQhCZdMEkmDuhxU5qz3zhRq7cpau15hpLbNqm2z6rvZgM92kV1am_yX_lQZAB7ApqxM_0-UWr7NnofQLwsLgD8</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Shapiro, James A.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201907</creationdate><title>No genome is an island: toward a 21st century agenda for evolution</title><author>Shapiro, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-bad84538021767940947a02672abdf07948116e364b8ac268ab2e63f4bf945e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biological evolution</topic><topic>biosphere interactions</topic><topic>Cell activation</topic><topic>Copying</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>extracellular vesicles (EVs)</topic><topic>Gametes</topic><topic>Genetic engineering</topic><topic>Genome - physiology</topic><topic>Genomes</topic><topic>Genomic Islands - physiology</topic><topic>Humans</topic><topic>infectious heredity</topic><topic>Interspecific</topic><topic>Interspecific hybridization</topic><topic>Microbiota - physiology</topic><topic>Molecular modelling</topic><topic>natural genetic engineering</topic><topic>virosphere contributions</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shapiro, James A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapiro, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No genome is an island: toward a 21st century agenda for evolution</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2019-07</date><risdate>2019</risdate><volume>1447</volume><issue>1</issue><spage>21</spage><epage>52</epage><pages>21-52</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>Conventional 20th century evolution thinking was based on the idea of isolated genomes for each species. Any possibility of life‐history inputs to the germ line was strictly excluded by Weismann's doctrine, and genome change was attributed to random copying errors. Today, we know that many life‐history events lead to rapid and nonrandom evolutionary change mediated by specific cellular functions. There are many ways that genomes, viruses, cells, and organisms interact to generate evolutionary variation. These include cell mergers and activation of natural genetic engineering by stress, infection, and interspecific hybridization. In addition, we know molecular mechanisms for transmitting life‐history information across generations through gametes. These discoveries require a new agenda for evolutionary theory and novel experimental designs to investigate the genomic impacts of stresses, biotic interactions, and sensory inputs coming from the environment. The review will offer some generic recommendations for enriching evolution experiments to incorporate new knowledge and find answers to previously excluded questions.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30900279</pmid><doi>10.1111/nyas.14044</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2019-07, Vol.1447 (1), p.21-52
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_2196527515
source MEDLINE; Access via Wiley Online Library
subjects Animals
Biological evolution
biosphere interactions
Cell activation
Copying
Evolution
Evolution, Molecular
extracellular vesicles (EVs)
Gametes
Genetic engineering
Genome - physiology
Genomes
Genomic Islands - physiology
Humans
infectious heredity
Interspecific
Interspecific hybridization
Microbiota - physiology
Molecular modelling
natural genetic engineering
virosphere contributions
Viruses
title No genome is an island: toward a 21st century agenda for evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No%20genome%20is%20an%20island:%20toward%20a%2021st%20century%20agenda%20for%20evolution&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Shapiro,%20James%20A.&rft.date=2019-07&rft.volume=1447&rft.issue=1&rft.spage=21&rft.epage=52&rft.pages=21-52&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/nyas.14044&rft_dat=%3Cproquest_cross%3E2196527515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257969294&rft_id=info:pmid/30900279&rfr_iscdi=true