No genome is an island: toward a 21st century agenda for evolution
Conventional 20th century evolution thinking was based on the idea of isolated genomes for each species. Any possibility of life‐history inputs to the germ line was strictly excluded by Weismann's doctrine, and genome change was attributed to random copying errors. Today, we know that many life...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2019-07, Vol.1447 (1), p.21-52 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1447 |
creator | Shapiro, James A. |
description | Conventional 20th century evolution thinking was based on the idea of isolated genomes for each species. Any possibility of life‐history inputs to the germ line was strictly excluded by Weismann's doctrine, and genome change was attributed to random copying errors. Today, we know that many life‐history events lead to rapid and nonrandom evolutionary change mediated by specific cellular functions. There are many ways that genomes, viruses, cells, and organisms interact to generate evolutionary variation. These include cell mergers and activation of natural genetic engineering by stress, infection, and interspecific hybridization. In addition, we know molecular mechanisms for transmitting life‐history information across generations through gametes. These discoveries require a new agenda for evolutionary theory and novel experimental designs to investigate the genomic impacts of stresses, biotic interactions, and sensory inputs coming from the environment. The review will offer some generic recommendations for enriching evolution experiments to incorporate new knowledge and find answers to previously excluded questions. |
doi_str_mv | 10.1111/nyas.14044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2196527515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196527515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-bad84538021767940947a02672abdf07948116e364b8ac268ab2e63f4bf945e63</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgipvTix9AAl5E6EzSNC_e5vANxjyoB08hbVPpaJuZtI5-ezM7PXgwh-Qh_Pjz8AfgFKMpDueq6bWfYooo3QNjzKmMGIvJPhgjxHkkJIlH4Mj7FUKYCMoPwShGEiHC5RjcLC18N42tDSw91E24K93k17C1G-1yqCHBvoWZadrO9VAHm2tYWAfNp626trTNMTgodOXNye6dgNe725f5Q7R4un-czxZRFiecRqnOBU1igQjmjEuKJOUaEcaJTvMChR-BMTMxo6nQGWFCp8SwuKBpIWkSpgm4GHLXzn50xreqLn1mqrCvsZ1XBEuWEJ7gJNDzP3RlO9eE7RQhCZdMEkmDuhxU5qz3zhRq7cpau15hpLbNqm2z6rvZgM92kV1am_yX_lQZAB7ApqxM_0-UWr7NnofQLwsLgD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257969294</pqid></control><display><type>article</type><title>No genome is an island: toward a 21st century agenda for evolution</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Shapiro, James A.</creator><creatorcontrib>Shapiro, James A.</creatorcontrib><description>Conventional 20th century evolution thinking was based on the idea of isolated genomes for each species. Any possibility of life‐history inputs to the germ line was strictly excluded by Weismann's doctrine, and genome change was attributed to random copying errors. Today, we know that many life‐history events lead to rapid and nonrandom evolutionary change mediated by specific cellular functions. There are many ways that genomes, viruses, cells, and organisms interact to generate evolutionary variation. These include cell mergers and activation of natural genetic engineering by stress, infection, and interspecific hybridization. In addition, we know molecular mechanisms for transmitting life‐history information across generations through gametes. These discoveries require a new agenda for evolutionary theory and novel experimental designs to investigate the genomic impacts of stresses, biotic interactions, and sensory inputs coming from the environment. The review will offer some generic recommendations for enriching evolution experiments to incorporate new knowledge and find answers to previously excluded questions.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.14044</identifier><identifier>PMID: 30900279</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biological evolution ; biosphere interactions ; Cell activation ; Copying ; Evolution ; Evolution, Molecular ; extracellular vesicles (EVs) ; Gametes ; Genetic engineering ; Genome - physiology ; Genomes ; Genomic Islands - physiology ; Humans ; infectious heredity ; Interspecific ; Interspecific hybridization ; Microbiota - physiology ; Molecular modelling ; natural genetic engineering ; virosphere contributions ; Viruses</subject><ispartof>Annals of the New York Academy of Sciences, 2019-07, Vol.1447 (1), p.21-52</ispartof><rights>2019 New York Academy of Sciences.</rights><rights>2019 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-bad84538021767940947a02672abdf07948116e364b8ac268ab2e63f4bf945e63</citedby><cites>FETCH-LOGICAL-c3574-bad84538021767940947a02672abdf07948116e364b8ac268ab2e63f4bf945e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnyas.14044$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnyas.14044$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30900279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shapiro, James A.</creatorcontrib><title>No genome is an island: toward a 21st century agenda for evolution</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Conventional 20th century evolution thinking was based on the idea of isolated genomes for each species. Any possibility of life‐history inputs to the germ line was strictly excluded by Weismann's doctrine, and genome change was attributed to random copying errors. Today, we know that many life‐history events lead to rapid and nonrandom evolutionary change mediated by specific cellular functions. There are many ways that genomes, viruses, cells, and organisms interact to generate evolutionary variation. These include cell mergers and activation of natural genetic engineering by stress, infection, and interspecific hybridization. In addition, we know molecular mechanisms for transmitting life‐history information across generations through gametes. These discoveries require a new agenda for evolutionary theory and novel experimental designs to investigate the genomic impacts of stresses, biotic interactions, and sensory inputs coming from the environment. The review will offer some generic recommendations for enriching evolution experiments to incorporate new knowledge and find answers to previously excluded questions.</description><subject>Animals</subject><subject>Biological evolution</subject><subject>biosphere interactions</subject><subject>Cell activation</subject><subject>Copying</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>extracellular vesicles (EVs)</subject><subject>Gametes</subject><subject>Genetic engineering</subject><subject>Genome - physiology</subject><subject>Genomes</subject><subject>Genomic Islands - physiology</subject><subject>Humans</subject><subject>infectious heredity</subject><subject>Interspecific</subject><subject>Interspecific hybridization</subject><subject>Microbiota - physiology</subject><subject>Molecular modelling</subject><subject>natural genetic engineering</subject><subject>virosphere contributions</subject><subject>Viruses</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1LwzAYB_AgipvTix9AAl5E6EzSNC_e5vANxjyoB08hbVPpaJuZtI5-ezM7PXgwh-Qh_Pjz8AfgFKMpDueq6bWfYooo3QNjzKmMGIvJPhgjxHkkJIlH4Mj7FUKYCMoPwShGEiHC5RjcLC18N42tDSw91E24K93k17C1G-1yqCHBvoWZadrO9VAHm2tYWAfNp626trTNMTgodOXNye6dgNe725f5Q7R4un-czxZRFiecRqnOBU1igQjmjEuKJOUaEcaJTvMChR-BMTMxo6nQGWFCp8SwuKBpIWkSpgm4GHLXzn50xreqLn1mqrCvsZ1XBEuWEJ7gJNDzP3RlO9eE7RQhCZdMEkmDuhxU5qz3zhRq7cpau15hpLbNqm2z6rvZgM92kV1am_yX_lQZAB7ApqxM_0-UWr7NnofQLwsLgD8</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Shapiro, James A.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201907</creationdate><title>No genome is an island: toward a 21st century agenda for evolution</title><author>Shapiro, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-bad84538021767940947a02672abdf07948116e364b8ac268ab2e63f4bf945e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biological evolution</topic><topic>biosphere interactions</topic><topic>Cell activation</topic><topic>Copying</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>extracellular vesicles (EVs)</topic><topic>Gametes</topic><topic>Genetic engineering</topic><topic>Genome - physiology</topic><topic>Genomes</topic><topic>Genomic Islands - physiology</topic><topic>Humans</topic><topic>infectious heredity</topic><topic>Interspecific</topic><topic>Interspecific hybridization</topic><topic>Microbiota - physiology</topic><topic>Molecular modelling</topic><topic>natural genetic engineering</topic><topic>virosphere contributions</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shapiro, James A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapiro, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No genome is an island: toward a 21st century agenda for evolution</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2019-07</date><risdate>2019</risdate><volume>1447</volume><issue>1</issue><spage>21</spage><epage>52</epage><pages>21-52</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>Conventional 20th century evolution thinking was based on the idea of isolated genomes for each species. Any possibility of life‐history inputs to the germ line was strictly excluded by Weismann's doctrine, and genome change was attributed to random copying errors. Today, we know that many life‐history events lead to rapid and nonrandom evolutionary change mediated by specific cellular functions. There are many ways that genomes, viruses, cells, and organisms interact to generate evolutionary variation. These include cell mergers and activation of natural genetic engineering by stress, infection, and interspecific hybridization. In addition, we know molecular mechanisms for transmitting life‐history information across generations through gametes. These discoveries require a new agenda for evolutionary theory and novel experimental designs to investigate the genomic impacts of stresses, biotic interactions, and sensory inputs coming from the environment. The review will offer some generic recommendations for enriching evolution experiments to incorporate new knowledge and find answers to previously excluded questions.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30900279</pmid><doi>10.1111/nyas.14044</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2019-07, Vol.1447 (1), p.21-52 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_proquest_miscellaneous_2196527515 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Biological evolution biosphere interactions Cell activation Copying Evolution Evolution, Molecular extracellular vesicles (EVs) Gametes Genetic engineering Genome - physiology Genomes Genomic Islands - physiology Humans infectious heredity Interspecific Interspecific hybridization Microbiota - physiology Molecular modelling natural genetic engineering virosphere contributions Viruses |
title | No genome is an island: toward a 21st century agenda for evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No%20genome%20is%20an%20island:%20toward%20a%2021st%20century%20agenda%20for%20evolution&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Shapiro,%20James%20A.&rft.date=2019-07&rft.volume=1447&rft.issue=1&rft.spage=21&rft.epage=52&rft.pages=21-52&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/nyas.14044&rft_dat=%3Cproquest_cross%3E2196527515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257969294&rft_id=info:pmid/30900279&rfr_iscdi=true |