A compact matrix model for atrial electrograms for tissue conductivity estimation
Finding the hidden parameters of the cardiac electrophysiological model would help to gain more insight on the mechanisms underlying atrial fibrillation, and subsequently, facilitate the diagnosis and treatment of the disease in later stages. In this work, we aim to estimate tissue conductivity from...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2019-04, Vol.107, p.284-291 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | |
container_start_page | 284 |
container_title | Computers in biology and medicine |
container_volume | 107 |
creator | Abdi, Bahareh Hendriks, Richard C. van der Veen, Alle-Jan de Groot, Natasja M.S. |
description | Finding the hidden parameters of the cardiac electrophysiological model would help to gain more insight on the mechanisms underlying atrial fibrillation, and subsequently, facilitate the diagnosis and treatment of the disease in later stages. In this work, we aim to estimate tissue conductivity from recorded electrograms as an indication of tissue (mal)functioning. To do so, we first develop a simple but effective forward model to replace the computationally intensive reaction-diffusion equations governing the electrical propagation in tissue. Using the simplified model, we present a compact matrix model for electrograms based on conductivity. Subsequently, we exploit the simplicity of the compact model to solve the ill-posed inverse problem of estimating tissue conductivity. The algorithm is demonstrated on simulated data as well as on clinically recorded data. The results show that the model allows to efficiently estimate the conductivity map. In addition, based on the estimated conductivity, realistic electrograms can be regenerated demonstrating the validity of the model.
•In this study we developed a compact matrix model for atrial electrograms to show its linear dependence on the conductivity vector, enabling the estimation of this parameter from the recorded electrograms.•Using the forward model, we formulated an inverse problem for conductivity estimation using sparse and low rank matrix regularization.•We performed the approach on simulated and clinically recorded data. The results show that despite the low resolution and all simplifying assumptions, the model can efficiently estimate the conductivity map and regenerate realistic electrograms.•The results show that the proposed approach outperforms the two provided reference methods specialy in case of anisotropy and inhomogeneity in the tissue. |
doi_str_mv | 10.1016/j.compbiomed.2019.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2196513507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482519300599</els_id><sourcerecordid>2196513507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-8d075eb913952150433c37c169c3b1fe0b67e6c33aface1a5108bd45b67d5aca3</originalsourceid><addsrcrecordid>eNqFkEtL7TAQx4Nc0ePjK0jBzd20ziRNH0sVXyCIoOuQplPJoW2OSSvXb2_qUYS7cRUy-T8mP8YShAwBi7N1ZtywaawbqM04YJ0BzwD5DlthVdYpSJH_YSsAhDSvuNxnByGsASAHAXtsX0AdY7BYscfzZInSZkoGPXn7LxlcS33SOZ8sd90n1JOZvHvxegif88mGMFP0je1sJvtmp_eEwmRjgHXjEdvtdB_o-Os8ZM_XV0-Xt-n9w83d5fl9anLJp7RqoZTU1ChqyVFCLoQRpcGiNqLBjqApSiqMELrThlBLhKppcxnHrdRGi0P2d5u78e51jv1qsMFQ3-uR3BwUx7qQKCSUUXr6n3TtZj_G7RTnkUhR1TlGVbVVGe9C8NSpjY9_8u8KQS3Y1Vr9YFcLdgVcRezRevJVMDfL27fxm3MUXGwFFIm8WfIqGEujodb6SFe1zv7e8gGeVJjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203068941</pqid></control><display><type>article</type><title>A compact matrix model for atrial electrograms for tissue conductivity estimation</title><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Abdi, Bahareh ; Hendriks, Richard C. ; van der Veen, Alle-Jan ; de Groot, Natasja M.S.</creator><creatorcontrib>Abdi, Bahareh ; Hendriks, Richard C. ; van der Veen, Alle-Jan ; de Groot, Natasja M.S.</creatorcontrib><description>Finding the hidden parameters of the cardiac electrophysiological model would help to gain more insight on the mechanisms underlying atrial fibrillation, and subsequently, facilitate the diagnosis and treatment of the disease in later stages. In this work, we aim to estimate tissue conductivity from recorded electrograms as an indication of tissue (mal)functioning. To do so, we first develop a simple but effective forward model to replace the computationally intensive reaction-diffusion equations governing the electrical propagation in tissue. Using the simplified model, we present a compact matrix model for electrograms based on conductivity. Subsequently, we exploit the simplicity of the compact model to solve the ill-posed inverse problem of estimating tissue conductivity. The algorithm is demonstrated on simulated data as well as on clinically recorded data. The results show that the model allows to efficiently estimate the conductivity map. In addition, based on the estimated conductivity, realistic electrograms can be regenerated demonstrating the validity of the model.
•In this study we developed a compact matrix model for atrial electrograms to show its linear dependence on the conductivity vector, enabling the estimation of this parameter from the recorded electrograms.•Using the forward model, we formulated an inverse problem for conductivity estimation using sparse and low rank matrix regularization.•We performed the approach on simulated and clinically recorded data. The results show that despite the low resolution and all simplifying assumptions, the model can efficiently estimate the conductivity map and regenerate realistic electrograms.•The results show that the proposed approach outperforms the two provided reference methods specialy in case of anisotropy and inhomogeneity in the tissue.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2019.02.012</identifier><identifier>PMID: 30901616</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Atrial fibrillation ; Cardiac arrhythmia ; Computer simulation ; Conductivity ; Conductivity estimation ; Electrical resistivity ; Electrode array ; Electrograms ; Electrophysiological model ; Fibrillation ; Ill posed problems ; Inverse problem ; Inverse problems ; Medical treatment ; Morphology ; Parameter estimation ; Physiology ; Propagation ; Reaction-diffusion equation ; Reaction-diffusion equations ; Tissues ; Velocity</subject><ispartof>Computers in biology and medicine, 2019-04, Vol.107, p.284-291</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>2019. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-8d075eb913952150433c37c169c3b1fe0b67e6c33aface1a5108bd45b67d5aca3</citedby><cites>FETCH-LOGICAL-c452t-8d075eb913952150433c37c169c3b1fe0b67e6c33aface1a5108bd45b67d5aca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2203068941?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993,64383,64385,64387,72239</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30901616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdi, Bahareh</creatorcontrib><creatorcontrib>Hendriks, Richard C.</creatorcontrib><creatorcontrib>van der Veen, Alle-Jan</creatorcontrib><creatorcontrib>de Groot, Natasja M.S.</creatorcontrib><title>A compact matrix model for atrial electrograms for tissue conductivity estimation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Finding the hidden parameters of the cardiac electrophysiological model would help to gain more insight on the mechanisms underlying atrial fibrillation, and subsequently, facilitate the diagnosis and treatment of the disease in later stages. In this work, we aim to estimate tissue conductivity from recorded electrograms as an indication of tissue (mal)functioning. To do so, we first develop a simple but effective forward model to replace the computationally intensive reaction-diffusion equations governing the electrical propagation in tissue. Using the simplified model, we present a compact matrix model for electrograms based on conductivity. Subsequently, we exploit the simplicity of the compact model to solve the ill-posed inverse problem of estimating tissue conductivity. The algorithm is demonstrated on simulated data as well as on clinically recorded data. The results show that the model allows to efficiently estimate the conductivity map. In addition, based on the estimated conductivity, realistic electrograms can be regenerated demonstrating the validity of the model.
•In this study we developed a compact matrix model for atrial electrograms to show its linear dependence on the conductivity vector, enabling the estimation of this parameter from the recorded electrograms.•Using the forward model, we formulated an inverse problem for conductivity estimation using sparse and low rank matrix regularization.•We performed the approach on simulated and clinically recorded data. The results show that despite the low resolution and all simplifying assumptions, the model can efficiently estimate the conductivity map and regenerate realistic electrograms.•The results show that the proposed approach outperforms the two provided reference methods specialy in case of anisotropy and inhomogeneity in the tissue.</description><subject>Algorithms</subject><subject>Atrial fibrillation</subject><subject>Cardiac arrhythmia</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Conductivity estimation</subject><subject>Electrical resistivity</subject><subject>Electrode array</subject><subject>Electrograms</subject><subject>Electrophysiological model</subject><subject>Fibrillation</subject><subject>Ill posed problems</subject><subject>Inverse problem</subject><subject>Inverse problems</subject><subject>Medical treatment</subject><subject>Morphology</subject><subject>Parameter estimation</subject><subject>Physiology</subject><subject>Propagation</subject><subject>Reaction-diffusion equation</subject><subject>Reaction-diffusion equations</subject><subject>Tissues</subject><subject>Velocity</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkEtL7TAQx4Nc0ePjK0jBzd20ziRNH0sVXyCIoOuQplPJoW2OSSvXb2_qUYS7cRUy-T8mP8YShAwBi7N1ZtywaawbqM04YJ0BzwD5DlthVdYpSJH_YSsAhDSvuNxnByGsASAHAXtsX0AdY7BYscfzZInSZkoGPXn7LxlcS33SOZ8sd90n1JOZvHvxegif88mGMFP0je1sJvtmp_eEwmRjgHXjEdvtdB_o-Os8ZM_XV0-Xt-n9w83d5fl9anLJp7RqoZTU1ChqyVFCLoQRpcGiNqLBjqApSiqMELrThlBLhKppcxnHrdRGi0P2d5u78e51jv1qsMFQ3-uR3BwUx7qQKCSUUXr6n3TtZj_G7RTnkUhR1TlGVbVVGe9C8NSpjY9_8u8KQS3Y1Vr9YFcLdgVcRezRevJVMDfL27fxm3MUXGwFFIm8WfIqGEujodb6SFe1zv7e8gGeVJjc</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Abdi, Bahareh</creator><creator>Hendriks, Richard C.</creator><creator>van der Veen, Alle-Jan</creator><creator>de Groot, Natasja M.S.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>201904</creationdate><title>A compact matrix model for atrial electrograms for tissue conductivity estimation</title><author>Abdi, Bahareh ; Hendriks, Richard C. ; van der Veen, Alle-Jan ; de Groot, Natasja M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-8d075eb913952150433c37c169c3b1fe0b67e6c33aface1a5108bd45b67d5aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Atrial fibrillation</topic><topic>Cardiac arrhythmia</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Conductivity estimation</topic><topic>Electrical resistivity</topic><topic>Electrode array</topic><topic>Electrograms</topic><topic>Electrophysiological model</topic><topic>Fibrillation</topic><topic>Ill posed problems</topic><topic>Inverse problem</topic><topic>Inverse problems</topic><topic>Medical treatment</topic><topic>Morphology</topic><topic>Parameter estimation</topic><topic>Physiology</topic><topic>Propagation</topic><topic>Reaction-diffusion equation</topic><topic>Reaction-diffusion equations</topic><topic>Tissues</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdi, Bahareh</creatorcontrib><creatorcontrib>Hendriks, Richard C.</creatorcontrib><creatorcontrib>van der Veen, Alle-Jan</creatorcontrib><creatorcontrib>de Groot, Natasja M.S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdi, Bahareh</au><au>Hendriks, Richard C.</au><au>van der Veen, Alle-Jan</au><au>de Groot, Natasja M.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A compact matrix model for atrial electrograms for tissue conductivity estimation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2019-04</date><risdate>2019</risdate><volume>107</volume><spage>284</spage><epage>291</epage><pages>284-291</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Finding the hidden parameters of the cardiac electrophysiological model would help to gain more insight on the mechanisms underlying atrial fibrillation, and subsequently, facilitate the diagnosis and treatment of the disease in later stages. In this work, we aim to estimate tissue conductivity from recorded electrograms as an indication of tissue (mal)functioning. To do so, we first develop a simple but effective forward model to replace the computationally intensive reaction-diffusion equations governing the electrical propagation in tissue. Using the simplified model, we present a compact matrix model for electrograms based on conductivity. Subsequently, we exploit the simplicity of the compact model to solve the ill-posed inverse problem of estimating tissue conductivity. The algorithm is demonstrated on simulated data as well as on clinically recorded data. The results show that the model allows to efficiently estimate the conductivity map. In addition, based on the estimated conductivity, realistic electrograms can be regenerated demonstrating the validity of the model.
•In this study we developed a compact matrix model for atrial electrograms to show its linear dependence on the conductivity vector, enabling the estimation of this parameter from the recorded electrograms.•Using the forward model, we formulated an inverse problem for conductivity estimation using sparse and low rank matrix regularization.•We performed the approach on simulated and clinically recorded data. The results show that despite the low resolution and all simplifying assumptions, the model can efficiently estimate the conductivity map and regenerate realistic electrograms.•The results show that the proposed approach outperforms the two provided reference methods specialy in case of anisotropy and inhomogeneity in the tissue.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>30901616</pmid><doi>10.1016/j.compbiomed.2019.02.012</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2019-04, Vol.107, p.284-291 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2196513507 |
source | ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Algorithms Atrial fibrillation Cardiac arrhythmia Computer simulation Conductivity Conductivity estimation Electrical resistivity Electrode array Electrograms Electrophysiological model Fibrillation Ill posed problems Inverse problem Inverse problems Medical treatment Morphology Parameter estimation Physiology Propagation Reaction-diffusion equation Reaction-diffusion equations Tissues Velocity |
title | A compact matrix model for atrial electrograms for tissue conductivity estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20compact%20matrix%20model%20for%20atrial%20electrograms%20for%20tissue%20conductivity%20estimation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Abdi,%20Bahareh&rft.date=2019-04&rft.volume=107&rft.spage=284&rft.epage=291&rft.pages=284-291&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2019.02.012&rft_dat=%3Cproquest_cross%3E2196513507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203068941&rft_id=info:pmid/30901616&rft_els_id=S0010482519300599&rfr_iscdi=true |