Mass transfer in turbulent flow
The local mass transfer coefficient in turbulent duct flow was measured using a new experimental technique. The experimental results agreed quite well with a numerical solution to the turbulent diffusion equation in channel flow. Formulation of the diffusion equation provided a continuous solution f...
Gespeichert in:
Veröffentlicht in: | Int. J. Heat Mass Transfer 16: No. 1, 121-128(Jan 1973) 121-128(Jan 1973), 1973-01, Vol.16 (1), p.121-128 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 1 |
container_start_page | 121 |
container_title | Int. J. Heat Mass Transfer 16: No. 1, 121-128(Jan 1973) |
container_volume | 16 |
creator | Larson, R.I. Yerazunis, S. |
description | The local mass transfer coefficient in turbulent duct flow was measured using a new experimental technique. The experimental results agreed quite well with a numerical solution to the turbulent diffusion equation in channel flow. Formulation of the diffusion equation provided a continuous solution from a point near the discontinuity in mass flux to the fully developed region. The Nusselt numbers obtained numerically agreed with Spalding's asymptotic solution at longitudinal-distance to hydraulic-diameter ratios less than 0.02 and Hatton et al.'s eigenvalue solution for symmetrical heat transfer which is valid for longitudinal-distance to hydraulic-diameter ratios greater than 1. Current asymmetric heat transfer results in the fully developed region fell between the eigenvalue and numerical solutions. |
doi_str_mv | 10.1016/0017-9310(73)90256-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_21956411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21956411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6edc4a7cd5e9c907d862381558f1910c31b93d31152f1e171c599871b53632fb3</originalsourceid><addsrcrecordid>eNo9kE1LxDAURbNQcBz9B4LFheiimtfXJM1ShvEDRtzoOqRpgpVOO-aliP_eqRVXl3s53MVh7Az4DXCQt5yDyjUCv1J4rXkhZA4HbPE_H7Fjoo-p8lIu2PmzJcpStD0FH7O2z9IY67HzfcpCN3ydsMNgO_Knf7lkb_fr19Vjvnl5eFrdbXKHJaZc-saVVrlGeO00V00lC6xAiCqABu4Qao0NAogigAcFTmhdKagFSixCjUt2Mf8OlFpDrk3evbuh771LphQStNZ76HKGdnH4HD0ls23J-a6zvR9GMgVoIUuAPVjOoIsDUfTB7GK7tfHbADeTJjMJMJMPo9D8ajKAPySvWcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21956411</pqid></control><display><type>article</type><title>Mass transfer in turbulent flow</title><source>Access via ScienceDirect (Elsevier)</source><creator>Larson, R.I. ; Yerazunis, S.</creator><creatorcontrib>Larson, R.I. ; Yerazunis, S. ; Rensselaer Polytechnic Inst., Troy, NY</creatorcontrib><description>The local mass transfer coefficient in turbulent duct flow was measured using a new experimental technique. The experimental results agreed quite well with a numerical solution to the turbulent diffusion equation in channel flow. Formulation of the diffusion equation provided a continuous solution from a point near the discontinuity in mass flux to the fully developed region. The Nusselt numbers obtained numerically agreed with Spalding's asymptotic solution at longitudinal-distance to hydraulic-diameter ratios less than 0.02 and Hatton et al.'s eigenvalue solution for symmetrical heat transfer which is valid for longitudinal-distance to hydraulic-diameter ratios greater than 1. Current asymmetric heat transfer results in the fully developed region fell between the eigenvalue and numerical solutions.</description><identifier>ISSN: 0017-9310</identifier><identifier>DOI: 10.1016/0017-9310(73)90256-1</identifier><language>eng</language><publisher>United Kingdom</publisher><subject>ASYMPTOTIC SOLUTIONS ; BOUNDARY CONDITIONS ; DIFFUSION ; DUCTS ; EIGENVALUES ; FLUID FLOW/mass transfer in turbulent, measurement of local coefficient of ; HEAT TRANSFER ; MASS TRANSFER ; MEASURING METHODS ; N42300 -Engineering-Heat Transfer & Fluid Flow ; NUSSELT NUMBER ; TURBULENT FLOW</subject><ispartof>Int. J. Heat Mass Transfer 16: No. 1, 121-128(Jan 1973), 1973-01, Vol.16 (1), p.121-128</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6edc4a7cd5e9c907d862381558f1910c31b93d31152f1e171c599871b53632fb3</citedby><cites>FETCH-LOGICAL-c343t-6edc4a7cd5e9c907d862381558f1910c31b93d31152f1e171c599871b53632fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4561999$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Larson, R.I.</creatorcontrib><creatorcontrib>Yerazunis, S.</creatorcontrib><creatorcontrib>Rensselaer Polytechnic Inst., Troy, NY</creatorcontrib><title>Mass transfer in turbulent flow</title><title>Int. J. Heat Mass Transfer 16: No. 1, 121-128(Jan 1973)</title><description>The local mass transfer coefficient in turbulent duct flow was measured using a new experimental technique. The experimental results agreed quite well with a numerical solution to the turbulent diffusion equation in channel flow. Formulation of the diffusion equation provided a continuous solution from a point near the discontinuity in mass flux to the fully developed region. The Nusselt numbers obtained numerically agreed with Spalding's asymptotic solution at longitudinal-distance to hydraulic-diameter ratios less than 0.02 and Hatton et al.'s eigenvalue solution for symmetrical heat transfer which is valid for longitudinal-distance to hydraulic-diameter ratios greater than 1. Current asymmetric heat transfer results in the fully developed region fell between the eigenvalue and numerical solutions.</description><subject>ASYMPTOTIC SOLUTIONS</subject><subject>BOUNDARY CONDITIONS</subject><subject>DIFFUSION</subject><subject>DUCTS</subject><subject>EIGENVALUES</subject><subject>FLUID FLOW/mass transfer in turbulent, measurement of local coefficient of</subject><subject>HEAT TRANSFER</subject><subject>MASS TRANSFER</subject><subject>MEASURING METHODS</subject><subject>N42300 -Engineering-Heat Transfer & Fluid Flow</subject><subject>NUSSELT NUMBER</subject><subject>TURBULENT FLOW</subject><issn>0017-9310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAURbNQcBz9B4LFheiimtfXJM1ShvEDRtzoOqRpgpVOO-aliP_eqRVXl3s53MVh7Az4DXCQt5yDyjUCv1J4rXkhZA4HbPE_H7Fjoo-p8lIu2PmzJcpStD0FH7O2z9IY67HzfcpCN3ydsMNgO_Knf7lkb_fr19Vjvnl5eFrdbXKHJaZc-saVVrlGeO00V00lC6xAiCqABu4Qao0NAogigAcFTmhdKagFSixCjUt2Mf8OlFpDrk3evbuh771LphQStNZ76HKGdnH4HD0ls23J-a6zvR9GMgVoIUuAPVjOoIsDUfTB7GK7tfHbADeTJjMJMJMPo9D8ajKAPySvWcg</recordid><startdate>197301</startdate><enddate>197301</enddate><creator>Larson, R.I.</creator><creator>Yerazunis, S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>197301</creationdate><title>Mass transfer in turbulent flow</title><author>Larson, R.I. ; Yerazunis, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6edc4a7cd5e9c907d862381558f1910c31b93d31152f1e171c599871b53632fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>ASYMPTOTIC SOLUTIONS</topic><topic>BOUNDARY CONDITIONS</topic><topic>DIFFUSION</topic><topic>DUCTS</topic><topic>EIGENVALUES</topic><topic>FLUID FLOW/mass transfer in turbulent, measurement of local coefficient of</topic><topic>HEAT TRANSFER</topic><topic>MASS TRANSFER</topic><topic>MEASURING METHODS</topic><topic>N42300 -Engineering-Heat Transfer & Fluid Flow</topic><topic>NUSSELT NUMBER</topic><topic>TURBULENT FLOW</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larson, R.I.</creatorcontrib><creatorcontrib>Yerazunis, S.</creatorcontrib><creatorcontrib>Rensselaer Polytechnic Inst., Troy, NY</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Int. J. Heat Mass Transfer 16: No. 1, 121-128(Jan 1973)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larson, R.I.</au><au>Yerazunis, S.</au><aucorp>Rensselaer Polytechnic Inst., Troy, NY</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass transfer in turbulent flow</atitle><jtitle>Int. J. Heat Mass Transfer 16: No. 1, 121-128(Jan 1973)</jtitle><date>1973-01</date><risdate>1973</risdate><volume>16</volume><issue>1</issue><spage>121</spage><epage>128</epage><pages>121-128</pages><issn>0017-9310</issn><abstract>The local mass transfer coefficient in turbulent duct flow was measured using a new experimental technique. The experimental results agreed quite well with a numerical solution to the turbulent diffusion equation in channel flow. Formulation of the diffusion equation provided a continuous solution from a point near the discontinuity in mass flux to the fully developed region. The Nusselt numbers obtained numerically agreed with Spalding's asymptotic solution at longitudinal-distance to hydraulic-diameter ratios less than 0.02 and Hatton et al.'s eigenvalue solution for symmetrical heat transfer which is valid for longitudinal-distance to hydraulic-diameter ratios greater than 1. Current asymmetric heat transfer results in the fully developed region fell between the eigenvalue and numerical solutions.</abstract><cop>United Kingdom</cop><doi>10.1016/0017-9310(73)90256-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | Int. J. Heat Mass Transfer 16: No. 1, 121-128(Jan 1973), 1973-01, Vol.16 (1), p.121-128 |
issn | 0017-9310 |
language | eng |
recordid | cdi_proquest_miscellaneous_21956411 |
source | Access via ScienceDirect (Elsevier) |
subjects | ASYMPTOTIC SOLUTIONS BOUNDARY CONDITIONS DIFFUSION DUCTS EIGENVALUES FLUID FLOW/mass transfer in turbulent, measurement of local coefficient of HEAT TRANSFER MASS TRANSFER MEASURING METHODS N42300 -Engineering-Heat Transfer & Fluid Flow NUSSELT NUMBER TURBULENT FLOW |
title | Mass transfer in turbulent flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20transfer%20in%20turbulent%20flow&rft.jtitle=Int.%20J.%20Heat%20Mass%20Transfer%2016:%20No.%201,%20121-128(Jan%201973)&rft.au=Larson,%20R.I.&rft.aucorp=Rensselaer%20Polytechnic%20Inst.,%20Troy,%20NY&rft.date=1973-01&rft.volume=16&rft.issue=1&rft.spage=121&rft.epage=128&rft.pages=121-128&rft.issn=0017-9310&rft_id=info:doi/10.1016/0017-9310(73)90256-1&rft_dat=%3Cproquest_osti_%3E21956411%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21956411&rft_id=info:pmid/&rfr_iscdi=true |