An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum

Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon–sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-04, Vol.141 (13), p.5275-5285
Hauptverfasser: Stampfli, Anja R, Goncharenko, Kristina V, Meury, Marcel, Dubey, Badri N, Schirmer, Tilman, Seebeck, Florian P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5285
container_issue 13
container_start_page 5275
container_title Journal of the American Chemical Society
container_volume 141
creator Stampfli, Anja R
Goncharenko, Kristina V
Meury, Marcel
Dubey, Badri N
Schirmer, Tilman
Seebeck, Florian P
description Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon–sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subject of several biochemical and computational studies. These studies all used the structure of the γ-glutamyl cysteine utilizing sulfoxide synthase, MthEgtB from Mycobacterium thermophilum (EC 1.14.99.50), as a structural basis. To provide an alternative model system, we have solved the crystal structure of CthEgtB from Chloracidobacterium thermophilum (EC 1.14.99.51) that utilizes cysteine as a sulfur donor. This structure reveals a completely different configuration of active site residues that are involved in oxygen binding and activation. Furthermore, comparison of the two EgtB structures enables a classification of all ergothioneine biosynthetic EgtBs into five subtypes, each characterized by unique active-site features. This active site diversity provides an excellent platform to examine the catalytic mechanism of sulfoxide synthases by comparative enzymology, but also raises the question as to why so many different solutions to the same biosynthetic problem have emerged.
doi_str_mv 10.1021/jacs.8b13023
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2194152038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194152038</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2403-63dc75546ffc7f12252cdeeb177768a12d221b112c9faf0bd835df621cf5ad213</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EEqWw4wO8ZJPiGefVZVuVh1SpC2AdOY7duEriYjtI_ADfjUsrsbozd-7MSIeQe2AzYAiPeyH9rKyBM-QXZAIZsiQDzC_JhDGGSVHm_JrceL-PbYolTMjPYqCLLig3iGC-FF3IP3kzIdZOtlFlGJ2i2jq6xdM8Ru1AzUBDq-ja7Wxoo6HMoOjSWP89RD8YSde7sKTa2Z6u2s46IU1jayHjNzP2x2XX20NrurG_JVdadF7dnXVKPp7W76uXZLN9fl0tNonAlPEk540ssizNtZaFBsQMZaNUDUVR5KUAbBChBkA510Kzuil51ugcQepMNAh8Sh5Odw_Ofo7Kh6o3XqquE4Oyo68Q5ukRGy__oxFqtbdjJNT5Clh1RF0dUVdn1PwXAYR0Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194152038</pqid></control><display><type>article</type><title>An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum</title><source>American Chemical Society Journals</source><creator>Stampfli, Anja R ; Goncharenko, Kristina V ; Meury, Marcel ; Dubey, Badri N ; Schirmer, Tilman ; Seebeck, Florian P</creator><creatorcontrib>Stampfli, Anja R ; Goncharenko, Kristina V ; Meury, Marcel ; Dubey, Badri N ; Schirmer, Tilman ; Seebeck, Florian P</creatorcontrib><description>Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon–sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subject of several biochemical and computational studies. These studies all used the structure of the γ-glutamyl cysteine utilizing sulfoxide synthase, MthEgtB from Mycobacterium thermophilum (EC 1.14.99.50), as a structural basis. To provide an alternative model system, we have solved the crystal structure of CthEgtB from Chloracidobacterium thermophilum (EC 1.14.99.51) that utilizes cysteine as a sulfur donor. This structure reveals a completely different configuration of active site residues that are involved in oxygen binding and activation. Furthermore, comparison of the two EgtB structures enables a classification of all ergothioneine biosynthetic EgtBs into five subtypes, each characterized by unique active-site features. This active site diversity provides an excellent platform to examine the catalytic mechanism of sulfoxide synthases by comparative enzymology, but also raises the question as to why so many different solutions to the same biosynthetic problem have emerged.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b13023</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2019-04, Vol.141 (13), p.5275-5285</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4625-1369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b13023$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b13023$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Stampfli, Anja R</creatorcontrib><creatorcontrib>Goncharenko, Kristina V</creatorcontrib><creatorcontrib>Meury, Marcel</creatorcontrib><creatorcontrib>Dubey, Badri N</creatorcontrib><creatorcontrib>Schirmer, Tilman</creatorcontrib><creatorcontrib>Seebeck, Florian P</creatorcontrib><title>An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon–sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subject of several biochemical and computational studies. These studies all used the structure of the γ-glutamyl cysteine utilizing sulfoxide synthase, MthEgtB from Mycobacterium thermophilum (EC 1.14.99.50), as a structural basis. To provide an alternative model system, we have solved the crystal structure of CthEgtB from Chloracidobacterium thermophilum (EC 1.14.99.51) that utilizes cysteine as a sulfur donor. This structure reveals a completely different configuration of active site residues that are involved in oxygen binding and activation. Furthermore, comparison of the two EgtB structures enables a classification of all ergothioneine biosynthetic EgtBs into five subtypes, each characterized by unique active-site features. This active site diversity provides an excellent platform to examine the catalytic mechanism of sulfoxide synthases by comparative enzymology, but also raises the question as to why so many different solutions to the same biosynthetic problem have emerged.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EEqWw4wO8ZJPiGefVZVuVh1SpC2AdOY7duEriYjtI_ADfjUsrsbozd-7MSIeQe2AzYAiPeyH9rKyBM-QXZAIZsiQDzC_JhDGGSVHm_JrceL-PbYolTMjPYqCLLig3iGC-FF3IP3kzIdZOtlFlGJ2i2jq6xdM8Ru1AzUBDq-ja7Wxoo6HMoOjSWP89RD8YSde7sKTa2Z6u2s46IU1jayHjNzP2x2XX20NrurG_JVdadF7dnXVKPp7W76uXZLN9fl0tNonAlPEk540ssizNtZaFBsQMZaNUDUVR5KUAbBChBkA510Kzuil51ugcQepMNAh8Sh5Odw_Ofo7Kh6o3XqquE4Oyo68Q5ukRGy__oxFqtbdjJNT5Clh1RF0dUVdn1PwXAYR0Lg</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Stampfli, Anja R</creator><creator>Goncharenko, Kristina V</creator><creator>Meury, Marcel</creator><creator>Dubey, Badri N</creator><creator>Schirmer, Tilman</creator><creator>Seebeck, Florian P</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4625-1369</orcidid></search><sort><creationdate>20190403</creationdate><title>An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum</title><author>Stampfli, Anja R ; Goncharenko, Kristina V ; Meury, Marcel ; Dubey, Badri N ; Schirmer, Tilman ; Seebeck, Florian P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2403-63dc75546ffc7f12252cdeeb177768a12d221b112c9faf0bd835df621cf5ad213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stampfli, Anja R</creatorcontrib><creatorcontrib>Goncharenko, Kristina V</creatorcontrib><creatorcontrib>Meury, Marcel</creatorcontrib><creatorcontrib>Dubey, Badri N</creatorcontrib><creatorcontrib>Schirmer, Tilman</creatorcontrib><creatorcontrib>Seebeck, Florian P</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stampfli, Anja R</au><au>Goncharenko, Kristina V</au><au>Meury, Marcel</au><au>Dubey, Badri N</au><au>Schirmer, Tilman</au><au>Seebeck, Florian P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-04-03</date><risdate>2019</risdate><volume>141</volume><issue>13</issue><spage>5275</spage><epage>5285</epage><pages>5275-5285</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon–sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subject of several biochemical and computational studies. These studies all used the structure of the γ-glutamyl cysteine utilizing sulfoxide synthase, MthEgtB from Mycobacterium thermophilum (EC 1.14.99.50), as a structural basis. To provide an alternative model system, we have solved the crystal structure of CthEgtB from Chloracidobacterium thermophilum (EC 1.14.99.51) that utilizes cysteine as a sulfur donor. This structure reveals a completely different configuration of active site residues that are involved in oxygen binding and activation. Furthermore, comparison of the two EgtB structures enables a classification of all ergothioneine biosynthetic EgtBs into five subtypes, each characterized by unique active-site features. This active site diversity provides an excellent platform to examine the catalytic mechanism of sulfoxide synthases by comparative enzymology, but also raises the question as to why so many different solutions to the same biosynthetic problem have emerged.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.8b13023</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4625-1369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-04, Vol.141 (13), p.5275-5285
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2194152038
source American Chemical Society Journals
title An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Alternative%20Active%20Site%20Architecture%20for%20O2%20Activation%20in%20the%20Ergothioneine%20Biosynthetic%20EgtB%20from%20Chloracidobacterium%20thermophilum&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Stampfli,%20Anja%20R&rft.date=2019-04-03&rft.volume=141&rft.issue=13&rft.spage=5275&rft.epage=5285&rft.pages=5275-5285&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b13023&rft_dat=%3Cproquest_acs_j%3E2194152038%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194152038&rft_id=info:pmid/&rfr_iscdi=true