A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1
The biosynthetic pathway of 2,3-butanediol (2,3-BDO) production from pyruvate under anaerobic conditions includes three enzymes: acetolactate synthase (ALS), acetolactate decarboxylase (ALDC), and acetoin reductase (AR). Recently, in anaerobic hyperthermophilic Pyrococcus furiosus , it has been repo...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2019-04, Vol.103 (8), p.3477-3485 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3485 |
---|---|
container_issue | 8 |
container_start_page | 3477 |
container_title | Applied microbiology and biotechnology |
container_volume | 103 |
creator | Lee, Gyu Bi Kim, Yun Jae Lim, Jae Kyu Kim, Tae Wan Kang, Sung Gyun Lee, Hyun Sook Lee, Jung-Hyun |
description | The biosynthetic pathway of 2,3-butanediol (2,3-BDO) production from pyruvate under anaerobic conditions includes three enzymes: acetolactate synthase (ALS), acetolactate decarboxylase (ALDC), and acetoin reductase (AR). Recently, in anaerobic hyperthermophilic
Pyrococcus furiosus
, it has been reported that acetoin, a precursor of 2,3-BDO, is produced from pyruvate by ALS through a temperature-dependent metabolic switch. In this study, we first attempted to produce 2,3-BDO from
Thermococcus onnurineus
NA1 using a simple biosynthetic pathway by two enzymes (ALS and AR) at a high temperature. Two heterologous genes, acetolactate synthase (
alsS
) from
Pyrococcus
sp. NA2 and alcohol dehydrogenase (
adh
) from
T. guaymacensis
, were introduced and expressed in
T. onnurineus
NA1. The mutant strain produced approximately 3.3 mM 2,3-BDO at 80 °C. An acetyl-CoA synthetase IIIα (TON_1001) was further deleted to enhance 2,3-BDO production, and the mutant strain showed a 25% increase in the specific production of 2,3-BDO. Furthermore, when carbon monoxide (CO) gas was added as a reductant, specific production of 2,3-BDO increased by 45%. These results suggest a new biosynthetic pathway for 2,3-BDO and demonstrate the possibility of
T. onnurineus
NA1 as a platform strain for 2,3-BDO production at high temperatures. |
doi_str_mv | 10.1007/s00253-019-09724-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2194142783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581343820</galeid><sourcerecordid>A581343820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-8a112aa2e7a589c06bc32d146980e4741f669653284d3a4304963dd2dae2dc473</originalsourceid><addsrcrecordid>eNp9kVtrFDEcxYModq1-AR9kwBcFU3ObJPO4FC-FoqD1xZeQTTK7KTPJmgu6_fRm3WpZEclDQvI7h_PPAeApRmcYIfE6I0R6ChEeIBoEYfDmHlhgRglEHLP7YIGw6KHoB3kCHuV8jRAmkvOH4IQiKQUWdAG-Lrvs5-3kupWPeRfKxhVvuq0um-96140xdeQVhatadHDWx6nbpmirKT6GzofuauPSHE00puYuhlCTD64dPyzxY_Bg1FN2T273U_Dl7Zur8_fw8uO7i_PlJTQ9pgVKjTHRmjihezkYxFeGEosZHyRyTDA8cj7wnhLJLNWMIjZwai2x2hFrmKCn4MXBtyX7Vl0uavbZuGlqiWPNiuCBYUaEpA19_hd6HWsKLd2eoozsP-6OWuvJKR_GWJI2e1O17CWmjEqCGnX2D6ot62ZvYnCjb_dHgpdHgsYU96Osdc1ZXXz-dMySA2tSzDm5UW2Tn3XaKYzUvnx1KF-18tWv8tVNEz27na6uZmf_SH633QB6AHJ7CmuX7sb_j-1PDcO2lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193420614</pqid></control><display><type>article</type><title>A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Gyu Bi ; Kim, Yun Jae ; Lim, Jae Kyu ; Kim, Tae Wan ; Kang, Sung Gyun ; Lee, Hyun Sook ; Lee, Jung-Hyun</creator><creatorcontrib>Lee, Gyu Bi ; Kim, Yun Jae ; Lim, Jae Kyu ; Kim, Tae Wan ; Kang, Sung Gyun ; Lee, Hyun Sook ; Lee, Jung-Hyun</creatorcontrib><description>The biosynthetic pathway of 2,3-butanediol (2,3-BDO) production from pyruvate under anaerobic conditions includes three enzymes: acetolactate synthase (ALS), acetolactate decarboxylase (ALDC), and acetoin reductase (AR). Recently, in anaerobic hyperthermophilic
Pyrococcus furiosus
, it has been reported that acetoin, a precursor of 2,3-BDO, is produced from pyruvate by ALS through a temperature-dependent metabolic switch. In this study, we first attempted to produce 2,3-BDO from
Thermococcus onnurineus
NA1 using a simple biosynthetic pathway by two enzymes (ALS and AR) at a high temperature. Two heterologous genes, acetolactate synthase (
alsS
) from
Pyrococcus
sp. NA2 and alcohol dehydrogenase (
adh
) from
T. guaymacensis
, were introduced and expressed in
T. onnurineus
NA1. The mutant strain produced approximately 3.3 mM 2,3-BDO at 80 °C. An acetyl-CoA synthetase IIIα (TON_1001) was further deleted to enhance 2,3-BDO production, and the mutant strain showed a 25% increase in the specific production of 2,3-BDO. Furthermore, when carbon monoxide (CO) gas was added as a reductant, specific production of 2,3-BDO increased by 45%. These results suggest a new biosynthetic pathway for 2,3-BDO and demonstrate the possibility of
T. onnurineus
NA1 as a platform strain for 2,3-BDO production at high temperatures.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-019-09724-z</identifier><identifier>PMID: 30887173</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetoin ; Acetolactate decarboxylase ; Acetolactate synthase ; Alcohol dehydrogenase ; Alcohols ; Anaerobic conditions ; Anaerobiosis ; Analysis ; Applied Genetics and Molecular Biotechnology ; Archaeal Proteins - genetics ; Biomaterials ; Biomedical and Life Sciences ; Biosynthetic Pathways - genetics ; Biotechnology ; Butanediol ; Butylene Glycols - metabolism ; Carbon monoxide ; Carbon Monoxide - chemistry ; Enzymes ; High temperature ; Hot Temperature ; Life Sciences ; Metabolic Engineering ; Microbial Genetics and Genomics ; Microbiology ; Production processes ; Pyruvic acid ; Reductase ; Temperature dependence ; Thermococcus ; Thermococcus - genetics ; Thermococcus - metabolism</subject><ispartof>Applied microbiology and biotechnology, 2019-04, Vol.103 (8), p.3477-3485</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-8a112aa2e7a589c06bc32d146980e4741f669653284d3a4304963dd2dae2dc473</citedby><cites>FETCH-LOGICAL-c513t-8a112aa2e7a589c06bc32d146980e4741f669653284d3a4304963dd2dae2dc473</cites><orcidid>0000-0002-6069-7909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-019-09724-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-019-09724-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30887173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Gyu Bi</creatorcontrib><creatorcontrib>Kim, Yun Jae</creatorcontrib><creatorcontrib>Lim, Jae Kyu</creatorcontrib><creatorcontrib>Kim, Tae Wan</creatorcontrib><creatorcontrib>Kang, Sung Gyun</creatorcontrib><creatorcontrib>Lee, Hyun Sook</creatorcontrib><creatorcontrib>Lee, Jung-Hyun</creatorcontrib><title>A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The biosynthetic pathway of 2,3-butanediol (2,3-BDO) production from pyruvate under anaerobic conditions includes three enzymes: acetolactate synthase (ALS), acetolactate decarboxylase (ALDC), and acetoin reductase (AR). Recently, in anaerobic hyperthermophilic
Pyrococcus furiosus
, it has been reported that acetoin, a precursor of 2,3-BDO, is produced from pyruvate by ALS through a temperature-dependent metabolic switch. In this study, we first attempted to produce 2,3-BDO from
Thermococcus onnurineus
NA1 using a simple biosynthetic pathway by two enzymes (ALS and AR) at a high temperature. Two heterologous genes, acetolactate synthase (
alsS
) from
Pyrococcus
sp. NA2 and alcohol dehydrogenase (
adh
) from
T. guaymacensis
, were introduced and expressed in
T. onnurineus
NA1. The mutant strain produced approximately 3.3 mM 2,3-BDO at 80 °C. An acetyl-CoA synthetase IIIα (TON_1001) was further deleted to enhance 2,3-BDO production, and the mutant strain showed a 25% increase in the specific production of 2,3-BDO. Furthermore, when carbon monoxide (CO) gas was added as a reductant, specific production of 2,3-BDO increased by 45%. These results suggest a new biosynthetic pathway for 2,3-BDO and demonstrate the possibility of
T. onnurineus
NA1 as a platform strain for 2,3-BDO production at high temperatures.</description><subject>Acetoin</subject><subject>Acetolactate decarboxylase</subject><subject>Acetolactate synthase</subject><subject>Alcohol dehydrogenase</subject><subject>Alcohols</subject><subject>Anaerobic conditions</subject><subject>Anaerobiosis</subject><subject>Analysis</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Archaeal Proteins - genetics</subject><subject>Biomaterials</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Biotechnology</subject><subject>Butanediol</subject><subject>Butylene Glycols - metabolism</subject><subject>Carbon monoxide</subject><subject>Carbon Monoxide - chemistry</subject><subject>Enzymes</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Life Sciences</subject><subject>Metabolic Engineering</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Production processes</subject><subject>Pyruvic acid</subject><subject>Reductase</subject><subject>Temperature dependence</subject><subject>Thermococcus</subject><subject>Thermococcus - genetics</subject><subject>Thermococcus - metabolism</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kVtrFDEcxYModq1-AR9kwBcFU3ObJPO4FC-FoqD1xZeQTTK7KTPJmgu6_fRm3WpZEclDQvI7h_PPAeApRmcYIfE6I0R6ChEeIBoEYfDmHlhgRglEHLP7YIGw6KHoB3kCHuV8jRAmkvOH4IQiKQUWdAG-Lrvs5-3kupWPeRfKxhVvuq0um-96140xdeQVhatadHDWx6nbpmirKT6GzofuauPSHE00puYuhlCTD64dPyzxY_Bg1FN2T273U_Dl7Zur8_fw8uO7i_PlJTQ9pgVKjTHRmjihezkYxFeGEosZHyRyTDA8cj7wnhLJLNWMIjZwai2x2hFrmKCn4MXBtyX7Vl0uavbZuGlqiWPNiuCBYUaEpA19_hd6HWsKLd2eoozsP-6OWuvJKR_GWJI2e1O17CWmjEqCGnX2D6ot62ZvYnCjb_dHgpdHgsYU96Osdc1ZXXz-dMySA2tSzDm5UW2Tn3XaKYzUvnx1KF-18tWv8tVNEz27na6uZmf_SH633QB6AHJ7CmuX7sb_j-1PDcO2lg</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Lee, Gyu Bi</creator><creator>Kim, Yun Jae</creator><creator>Lim, Jae Kyu</creator><creator>Kim, Tae Wan</creator><creator>Kang, Sung Gyun</creator><creator>Lee, Hyun Sook</creator><creator>Lee, Jung-Hyun</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6069-7909</orcidid></search><sort><creationdate>20190401</creationdate><title>A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1</title><author>Lee, Gyu Bi ; Kim, Yun Jae ; Lim, Jae Kyu ; Kim, Tae Wan ; Kang, Sung Gyun ; Lee, Hyun Sook ; Lee, Jung-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-8a112aa2e7a589c06bc32d146980e4741f669653284d3a4304963dd2dae2dc473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetoin</topic><topic>Acetolactate decarboxylase</topic><topic>Acetolactate synthase</topic><topic>Alcohol dehydrogenase</topic><topic>Alcohols</topic><topic>Anaerobic conditions</topic><topic>Anaerobiosis</topic><topic>Analysis</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Archaeal Proteins - genetics</topic><topic>Biomaterials</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Biotechnology</topic><topic>Butanediol</topic><topic>Butylene Glycols - metabolism</topic><topic>Carbon monoxide</topic><topic>Carbon Monoxide - chemistry</topic><topic>Enzymes</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Life Sciences</topic><topic>Metabolic Engineering</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Production processes</topic><topic>Pyruvic acid</topic><topic>Reductase</topic><topic>Temperature dependence</topic><topic>Thermococcus</topic><topic>Thermococcus - genetics</topic><topic>Thermococcus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Gyu Bi</creatorcontrib><creatorcontrib>Kim, Yun Jae</creatorcontrib><creatorcontrib>Lim, Jae Kyu</creatorcontrib><creatorcontrib>Kim, Tae Wan</creatorcontrib><creatorcontrib>Kang, Sung Gyun</creatorcontrib><creatorcontrib>Lee, Hyun Sook</creatorcontrib><creatorcontrib>Lee, Jung-Hyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Gyu Bi</au><au>Kim, Yun Jae</au><au>Lim, Jae Kyu</au><au>Kim, Tae Wan</au><au>Kang, Sung Gyun</au><au>Lee, Hyun Sook</au><au>Lee, Jung-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>103</volume><issue>8</issue><spage>3477</spage><epage>3485</epage><pages>3477-3485</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>The biosynthetic pathway of 2,3-butanediol (2,3-BDO) production from pyruvate under anaerobic conditions includes three enzymes: acetolactate synthase (ALS), acetolactate decarboxylase (ALDC), and acetoin reductase (AR). Recently, in anaerobic hyperthermophilic
Pyrococcus furiosus
, it has been reported that acetoin, a precursor of 2,3-BDO, is produced from pyruvate by ALS through a temperature-dependent metabolic switch. In this study, we first attempted to produce 2,3-BDO from
Thermococcus onnurineus
NA1 using a simple biosynthetic pathway by two enzymes (ALS and AR) at a high temperature. Two heterologous genes, acetolactate synthase (
alsS
) from
Pyrococcus
sp. NA2 and alcohol dehydrogenase (
adh
) from
T. guaymacensis
, were introduced and expressed in
T. onnurineus
NA1. The mutant strain produced approximately 3.3 mM 2,3-BDO at 80 °C. An acetyl-CoA synthetase IIIα (TON_1001) was further deleted to enhance 2,3-BDO production, and the mutant strain showed a 25% increase in the specific production of 2,3-BDO. Furthermore, when carbon monoxide (CO) gas was added as a reductant, specific production of 2,3-BDO increased by 45%. These results suggest a new biosynthetic pathway for 2,3-BDO and demonstrate the possibility of
T. onnurineus
NA1 as a platform strain for 2,3-BDO production at high temperatures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30887173</pmid><doi>10.1007/s00253-019-09724-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6069-7909</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2019-04, Vol.103 (8), p.3477-3485 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2194142783 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acetoin Acetolactate decarboxylase Acetolactate synthase Alcohol dehydrogenase Alcohols Anaerobic conditions Anaerobiosis Analysis Applied Genetics and Molecular Biotechnology Archaeal Proteins - genetics Biomaterials Biomedical and Life Sciences Biosynthetic Pathways - genetics Biotechnology Butanediol Butylene Glycols - metabolism Carbon monoxide Carbon Monoxide - chemistry Enzymes High temperature Hot Temperature Life Sciences Metabolic Engineering Microbial Genetics and Genomics Microbiology Production processes Pyruvic acid Reductase Temperature dependence Thermococcus Thermococcus - genetics Thermococcus - metabolism |
title | A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20biosynthetic%20pathway%20for%202,3-butanediol%20production%20in%20Thermococcus%20onnurineus%20NA1&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Lee,%20Gyu%20Bi&rft.date=2019-04-01&rft.volume=103&rft.issue=8&rft.spage=3477&rft.epage=3485&rft.pages=3477-3485&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-019-09724-z&rft_dat=%3Cgale_proqu%3EA581343820%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193420614&rft_id=info:pmid/30887173&rft_galeid=A581343820&rfr_iscdi=true |