Development of an integrated chromatographic system for ω-transaminase-IMER characterization useful for flow-chemistry applications
•ω−transamimase was immobilized on epoxy monolithic silica.•The activity of the IMER was studied by an integrated HPLC system.•Optimization of catalytic properties was carried out by a DoE approach.•The synthesis of chiral amines of pharmaceutical interest was investigated. An integrated chromatogra...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical and biomedical analysis 2019-05, Vol.169, p.260-268 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 268 |
---|---|
container_issue | |
container_start_page | 260 |
container_title | Journal of pharmaceutical and biomedical analysis |
container_volume | 169 |
creator | Corti, M. Rinaldi, F. Monti, D. Ferrandi, E.E. Marrubini, G. Temporini, C. Tripodo, G. Kupfer, T. Conti, P. Terreni, M. Massolini, G. Calleri, E. |
description | •ω−transamimase was immobilized on epoxy monolithic silica.•The activity of the IMER was studied by an integrated HPLC system.•Optimization of catalytic properties was carried out by a DoE approach.•The synthesis of chiral amines of pharmaceutical interest was investigated.
An integrated chromatographic system was developed to rapidly investigate the biocatalytic properties of ω-transaminases useful for the synthesis of chiral amines. ATA-117, an (R)-selective ω-transaminase was selected as a proof of concept. The enzyme was purified and covalently immobilized on an epoxy monolithic silica support to create an immobilized enzyme reactor (IMER). Reactor efficiency was evaluated in the conversion of a model substrate. The IMER was coupled through a switching valve to an achiral analytical column for separation and quantitation of the transamination products. The best conditions of the transaminase-catalyzed bioconversion were optimized by a design of experiments (DoE) approach. The production of (R)-1-(4-methoxyphenyl)propan-2-amine and (R)-1-methyl-3-phenylpropylamine, intermediates for the synthesis of the bronchodilator formoterol and the antihypertensive dilevalol respectively, was achieved in the presence of different amino donors. The enantiomeric excess (ee) was determined off-line by developing a derivatization procedure using Nα-(2,4-dinitro-5-fluorophenyl)-L-alaninamide reagent. The most satisfactory conversion yields were 60% for (R)-1-(4-methoxyphenyl)propan-2-amine and 29% for (R)-1-methyl-3-phenylpropylamine, using isopropylamine as amino donor. The enantiomeric excess of the reactions were 84%R and 99%R, respectively. |
doi_str_mv | 10.1016/j.jpba.2019.03.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2194142428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0731708518328905</els_id><sourcerecordid>2194142428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3150-865338a03a25b454ba1f038e53a828e72d755d616c94d2e68b157d4ce2e0f6413</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMo7rj6BzxIjl66zWd3BrzIuurCiiAK3kJ1utrJ0N1pk_TKePbir_MvmdlZPXoqCp73peoh5ClnNWe8ebGv90sHtWB8WzNZM8HukQ03raxEo77cJxvWSl61zOgz8iilPWNM8616SM4kM0ZJoTbk52u8wTEsE86ZhoHCTP2c8WuEjD11uxgmyKGsy847mg4p40SHEOnvX1WOMCeY_AwJq6v3lx8LDxFcxuh_QPZhpmvCYR1vA8MYvlduh5NPOR4oLMvo3S2VHpMHA4wJn9zNc_L5zeWni3fV9Ye3VxevrisnuWaVabSUBpgEoTulVQd8YNKglmCEwVb0rdZ9wxu3Vb3AxnRct71yKJANjeLynDw_9S4xfFsxZVuOcTiOMGNYkxXFDldCCVNQcUJdDClFHOwS_QTxYDmzR_t2b4_27dG-ZdIW-yX07K5_7Sbs_0X-6i7AyxOA5csbj9Em53F22PuILts--P_1_wHq8Zj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194142428</pqid></control><display><type>article</type><title>Development of an integrated chromatographic system for ω-transaminase-IMER characterization useful for flow-chemistry applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Corti, M. ; Rinaldi, F. ; Monti, D. ; Ferrandi, E.E. ; Marrubini, G. ; Temporini, C. ; Tripodo, G. ; Kupfer, T. ; Conti, P. ; Terreni, M. ; Massolini, G. ; Calleri, E.</creator><creatorcontrib>Corti, M. ; Rinaldi, F. ; Monti, D. ; Ferrandi, E.E. ; Marrubini, G. ; Temporini, C. ; Tripodo, G. ; Kupfer, T. ; Conti, P. ; Terreni, M. ; Massolini, G. ; Calleri, E.</creatorcontrib><description>•ω−transamimase was immobilized on epoxy monolithic silica.•The activity of the IMER was studied by an integrated HPLC system.•Optimization of catalytic properties was carried out by a DoE approach.•The synthesis of chiral amines of pharmaceutical interest was investigated.
An integrated chromatographic system was developed to rapidly investigate the biocatalytic properties of ω-transaminases useful for the synthesis of chiral amines. ATA-117, an (R)-selective ω-transaminase was selected as a proof of concept. The enzyme was purified and covalently immobilized on an epoxy monolithic silica support to create an immobilized enzyme reactor (IMER). Reactor efficiency was evaluated in the conversion of a model substrate. The IMER was coupled through a switching valve to an achiral analytical column for separation and quantitation of the transamination products. The best conditions of the transaminase-catalyzed bioconversion were optimized by a design of experiments (DoE) approach. The production of (R)-1-(4-methoxyphenyl)propan-2-amine and (R)-1-methyl-3-phenylpropylamine, intermediates for the synthesis of the bronchodilator formoterol and the antihypertensive dilevalol respectively, was achieved in the presence of different amino donors. The enantiomeric excess (ee) was determined off-line by developing a derivatization procedure using Nα-(2,4-dinitro-5-fluorophenyl)-L-alaninamide reagent. The most satisfactory conversion yields were 60% for (R)-1-(4-methoxyphenyl)propan-2-amine and 29% for (R)-1-methyl-3-phenylpropylamine, using isopropylamine as amino donor. The enantiomeric excess of the reactions were 84%R and 99%R, respectively.</description><identifier>ISSN: 0731-7085</identifier><identifier>EISSN: 1873-264X</identifier><identifier>DOI: 10.1016/j.jpba.2019.03.020</identifier><identifier>PMID: 30884324</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Amination - physiology ; Amines - chemistry ; ATA-117 ; Biocatalysis ; Catalysis ; Chiral amines ; Chromatography - methods ; Enzymes, Immobilized - chemistry ; IMERs ; Monolithic silica ; Propylamines - chemistry ; Stereoisomerism ; Transaminases - chemistry ; ω-transaminases</subject><ispartof>Journal of pharmaceutical and biomedical analysis, 2019-05, Vol.169, p.260-268</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3150-865338a03a25b454ba1f038e53a828e72d755d616c94d2e68b157d4ce2e0f6413</citedby><cites>FETCH-LOGICAL-c3150-865338a03a25b454ba1f038e53a828e72d755d616c94d2e68b157d4ce2e0f6413</cites><orcidid>0000-0002-3390-9638 ; 0000-0003-1399-5783 ; 0000-0001-5462-5629 ; 0000-0003-2140-0567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpba.2019.03.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30884324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corti, M.</creatorcontrib><creatorcontrib>Rinaldi, F.</creatorcontrib><creatorcontrib>Monti, D.</creatorcontrib><creatorcontrib>Ferrandi, E.E.</creatorcontrib><creatorcontrib>Marrubini, G.</creatorcontrib><creatorcontrib>Temporini, C.</creatorcontrib><creatorcontrib>Tripodo, G.</creatorcontrib><creatorcontrib>Kupfer, T.</creatorcontrib><creatorcontrib>Conti, P.</creatorcontrib><creatorcontrib>Terreni, M.</creatorcontrib><creatorcontrib>Massolini, G.</creatorcontrib><creatorcontrib>Calleri, E.</creatorcontrib><title>Development of an integrated chromatographic system for ω-transaminase-IMER characterization useful for flow-chemistry applications</title><title>Journal of pharmaceutical and biomedical analysis</title><addtitle>J Pharm Biomed Anal</addtitle><description>•ω−transamimase was immobilized on epoxy monolithic silica.•The activity of the IMER was studied by an integrated HPLC system.•Optimization of catalytic properties was carried out by a DoE approach.•The synthesis of chiral amines of pharmaceutical interest was investigated.
An integrated chromatographic system was developed to rapidly investigate the biocatalytic properties of ω-transaminases useful for the synthesis of chiral amines. ATA-117, an (R)-selective ω-transaminase was selected as a proof of concept. The enzyme was purified and covalently immobilized on an epoxy monolithic silica support to create an immobilized enzyme reactor (IMER). Reactor efficiency was evaluated in the conversion of a model substrate. The IMER was coupled through a switching valve to an achiral analytical column for separation and quantitation of the transamination products. The best conditions of the transaminase-catalyzed bioconversion were optimized by a design of experiments (DoE) approach. The production of (R)-1-(4-methoxyphenyl)propan-2-amine and (R)-1-methyl-3-phenylpropylamine, intermediates for the synthesis of the bronchodilator formoterol and the antihypertensive dilevalol respectively, was achieved in the presence of different amino donors. The enantiomeric excess (ee) was determined off-line by developing a derivatization procedure using Nα-(2,4-dinitro-5-fluorophenyl)-L-alaninamide reagent. The most satisfactory conversion yields were 60% for (R)-1-(4-methoxyphenyl)propan-2-amine and 29% for (R)-1-methyl-3-phenylpropylamine, using isopropylamine as amino donor. The enantiomeric excess of the reactions were 84%R and 99%R, respectively.</description><subject>Amination - physiology</subject><subject>Amines - chemistry</subject><subject>ATA-117</subject><subject>Biocatalysis</subject><subject>Catalysis</subject><subject>Chiral amines</subject><subject>Chromatography - methods</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>IMERs</subject><subject>Monolithic silica</subject><subject>Propylamines - chemistry</subject><subject>Stereoisomerism</subject><subject>Transaminases - chemistry</subject><subject>ω-transaminases</subject><issn>0731-7085</issn><issn>1873-264X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE2LFDEQhoMo7rj6BzxIjl66zWd3BrzIuurCiiAK3kJ1utrJ0N1pk_TKePbir_MvmdlZPXoqCp73peoh5ClnNWe8ebGv90sHtWB8WzNZM8HukQ03raxEo77cJxvWSl61zOgz8iilPWNM8616SM4kM0ZJoTbk52u8wTEsE86ZhoHCTP2c8WuEjD11uxgmyKGsy847mg4p40SHEOnvX1WOMCeY_AwJq6v3lx8LDxFcxuh_QPZhpmvCYR1vA8MYvlduh5NPOR4oLMvo3S2VHpMHA4wJn9zNc_L5zeWni3fV9Ye3VxevrisnuWaVabSUBpgEoTulVQd8YNKglmCEwVb0rdZ9wxu3Vb3AxnRct71yKJANjeLynDw_9S4xfFsxZVuOcTiOMGNYkxXFDldCCVNQcUJdDClFHOwS_QTxYDmzR_t2b4_27dG-ZdIW-yX07K5_7Sbs_0X-6i7AyxOA5csbj9Em53F22PuILts--P_1_wHq8Zj0</recordid><startdate>20190530</startdate><enddate>20190530</enddate><creator>Corti, M.</creator><creator>Rinaldi, F.</creator><creator>Monti, D.</creator><creator>Ferrandi, E.E.</creator><creator>Marrubini, G.</creator><creator>Temporini, C.</creator><creator>Tripodo, G.</creator><creator>Kupfer, T.</creator><creator>Conti, P.</creator><creator>Terreni, M.</creator><creator>Massolini, G.</creator><creator>Calleri, E.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3390-9638</orcidid><orcidid>https://orcid.org/0000-0003-1399-5783</orcidid><orcidid>https://orcid.org/0000-0001-5462-5629</orcidid><orcidid>https://orcid.org/0000-0003-2140-0567</orcidid></search><sort><creationdate>20190530</creationdate><title>Development of an integrated chromatographic system for ω-transaminase-IMER characterization useful for flow-chemistry applications</title><author>Corti, M. ; Rinaldi, F. ; Monti, D. ; Ferrandi, E.E. ; Marrubini, G. ; Temporini, C. ; Tripodo, G. ; Kupfer, T. ; Conti, P. ; Terreni, M. ; Massolini, G. ; Calleri, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3150-865338a03a25b454ba1f038e53a828e72d755d616c94d2e68b157d4ce2e0f6413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amination - physiology</topic><topic>Amines - chemistry</topic><topic>ATA-117</topic><topic>Biocatalysis</topic><topic>Catalysis</topic><topic>Chiral amines</topic><topic>Chromatography - methods</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>IMERs</topic><topic>Monolithic silica</topic><topic>Propylamines - chemistry</topic><topic>Stereoisomerism</topic><topic>Transaminases - chemistry</topic><topic>ω-transaminases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corti, M.</creatorcontrib><creatorcontrib>Rinaldi, F.</creatorcontrib><creatorcontrib>Monti, D.</creatorcontrib><creatorcontrib>Ferrandi, E.E.</creatorcontrib><creatorcontrib>Marrubini, G.</creatorcontrib><creatorcontrib>Temporini, C.</creatorcontrib><creatorcontrib>Tripodo, G.</creatorcontrib><creatorcontrib>Kupfer, T.</creatorcontrib><creatorcontrib>Conti, P.</creatorcontrib><creatorcontrib>Terreni, M.</creatorcontrib><creatorcontrib>Massolini, G.</creatorcontrib><creatorcontrib>Calleri, E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical and biomedical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corti, M.</au><au>Rinaldi, F.</au><au>Monti, D.</au><au>Ferrandi, E.E.</au><au>Marrubini, G.</au><au>Temporini, C.</au><au>Tripodo, G.</au><au>Kupfer, T.</au><au>Conti, P.</au><au>Terreni, M.</au><au>Massolini, G.</au><au>Calleri, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an integrated chromatographic system for ω-transaminase-IMER characterization useful for flow-chemistry applications</atitle><jtitle>Journal of pharmaceutical and biomedical analysis</jtitle><addtitle>J Pharm Biomed Anal</addtitle><date>2019-05-30</date><risdate>2019</risdate><volume>169</volume><spage>260</spage><epage>268</epage><pages>260-268</pages><issn>0731-7085</issn><eissn>1873-264X</eissn><abstract>•ω−transamimase was immobilized on epoxy monolithic silica.•The activity of the IMER was studied by an integrated HPLC system.•Optimization of catalytic properties was carried out by a DoE approach.•The synthesis of chiral amines of pharmaceutical interest was investigated.
An integrated chromatographic system was developed to rapidly investigate the biocatalytic properties of ω-transaminases useful for the synthesis of chiral amines. ATA-117, an (R)-selective ω-transaminase was selected as a proof of concept. The enzyme was purified and covalently immobilized on an epoxy monolithic silica support to create an immobilized enzyme reactor (IMER). Reactor efficiency was evaluated in the conversion of a model substrate. The IMER was coupled through a switching valve to an achiral analytical column for separation and quantitation of the transamination products. The best conditions of the transaminase-catalyzed bioconversion were optimized by a design of experiments (DoE) approach. The production of (R)-1-(4-methoxyphenyl)propan-2-amine and (R)-1-methyl-3-phenylpropylamine, intermediates for the synthesis of the bronchodilator formoterol and the antihypertensive dilevalol respectively, was achieved in the presence of different amino donors. The enantiomeric excess (ee) was determined off-line by developing a derivatization procedure using Nα-(2,4-dinitro-5-fluorophenyl)-L-alaninamide reagent. The most satisfactory conversion yields were 60% for (R)-1-(4-methoxyphenyl)propan-2-amine and 29% for (R)-1-methyl-3-phenylpropylamine, using isopropylamine as amino donor. The enantiomeric excess of the reactions were 84%R and 99%R, respectively.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>30884324</pmid><doi>10.1016/j.jpba.2019.03.020</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3390-9638</orcidid><orcidid>https://orcid.org/0000-0003-1399-5783</orcidid><orcidid>https://orcid.org/0000-0001-5462-5629</orcidid><orcidid>https://orcid.org/0000-0003-2140-0567</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-7085 |
ispartof | Journal of pharmaceutical and biomedical analysis, 2019-05, Vol.169, p.260-268 |
issn | 0731-7085 1873-264X |
language | eng |
recordid | cdi_proquest_miscellaneous_2194142428 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Amination - physiology Amines - chemistry ATA-117 Biocatalysis Catalysis Chiral amines Chromatography - methods Enzymes, Immobilized - chemistry IMERs Monolithic silica Propylamines - chemistry Stereoisomerism Transaminases - chemistry ω-transaminases |
title | Development of an integrated chromatographic system for ω-transaminase-IMER characterization useful for flow-chemistry applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20integrated%20chromatographic%20system%20for%20%CF%89-transaminase-IMER%20characterization%20useful%20for%20flow-chemistry%20applications&rft.jtitle=Journal%20of%20pharmaceutical%20and%20biomedical%20analysis&rft.au=Corti,%20M.&rft.date=2019-05-30&rft.volume=169&rft.spage=260&rft.epage=268&rft.pages=260-268&rft.issn=0731-7085&rft.eissn=1873-264X&rft_id=info:doi/10.1016/j.jpba.2019.03.020&rft_dat=%3Cproquest_cross%3E2194142428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194142428&rft_id=info:pmid/30884324&rft_els_id=S0731708518328905&rfr_iscdi=true |