The Fermi surface geometrical origin of axis-dependent conduction polarity in layered materials
Electronic materials generally exhibit a single isotropic majority carrier type, electrons or holes. Some superlattice 1 , 2 and hexagonal 3 – 5 materials exhibit opposite conduction polarities along in-plane and cross-plane directions due to multiple electron and hole bands. Here, we uncover a mate...
Gespeichert in:
Veröffentlicht in: | Nature materials 2019-06, Vol.18 (6), p.568-572 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 572 |
---|---|
container_issue | 6 |
container_start_page | 568 |
container_title | Nature materials |
container_volume | 18 |
creator | He, Bin Wang, Yaxian Arguilla, Maxx Q. Cultrara, Nicholas D. Scudder, Michael R. Goldberger, Joshua E. Windl, Wolfgang Heremans, Joseph P. |
description | Electronic materials generally exhibit a single isotropic majority carrier type, electrons or holes. Some superlattice
1
,
2
and hexagonal
3
–
5
materials exhibit opposite conduction polarities along in-plane and cross-plane directions due to multiple electron and hole bands. Here, we uncover a material genus with this behaviour that originates from the Fermi surface geometry of a single band. NaSn
2
As
2
, a layered metal, has such a Fermi surface. It displays in-plane electron and cross-plane hole conduction in thermopower and exactly the opposite polarity in the Hall effect. The small Nernst coefficient and magnetoresistance preclude multi-band transport. We label this direction-dependent carrier polarity in single-band systems ‘goniopolarity’. We expect to find goniopolarity and the Fermi surface geometry that produces it in many metals and semiconductors whose electronic structure is at the boundary between two and three dimensions. Goniopolarity may enable future explorations of complex transport phenomena that lead to unprecedented device concepts.
A single-band metal whose carriers behave as electrons or holes depending on the direction of travel is observed. The effect arises from a particular type of Fermi surface geometry. |
doi_str_mv | 10.1038/s41563-019-0309-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2194139679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194139679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-147078152f6b127a763c2a75aae5a3ec542795e99c36312b6eec38f77f641c1a3</originalsourceid><addsrcrecordid>eNp1kE1LJDEQhsOirJ8_YC8S8LKX1lQ-u4-L6CoIXvQcMunq2QzdnTHphp1_b4YZFQRPVVBPvVU8hPwCdgVM1NdZgtKiYtBUTLCmkj_IMUijK6k1O9j3AJwfkZOcV4xxUEr_JEeC1bWWjB8T-_wP6R2mIdA8p855pEuMA04peNfTmMIyjDR21P0PuWpxjWOL40R9HNvZTyGOdB17l8K0oQXs3QYTtnRwE6bg-nxGDrtS8HxfT8nL3e3zzX31-PT34ebPY-WlqKeqfMpMDYp3egHcOKOF584o51A5gV5JbhqFTeOFFsAXGtGLujOm0xI8OHFKfu9y1ym-zpgnO4Tsse_diHHOlkMjQTTaNAW9_IKu4pzG8p3lnNdacW3qQsGO8inmnLCz6xQGlzYWmN3atzv7tti3W_tWlp2LffK8GLD92HjXXQC-A3IZjUtMn6e_T30DfJ2POg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228652678</pqid></control><display><type>article</type><title>The Fermi surface geometrical origin of axis-dependent conduction polarity in layered materials</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>He, Bin ; Wang, Yaxian ; Arguilla, Maxx Q. ; Cultrara, Nicholas D. ; Scudder, Michael R. ; Goldberger, Joshua E. ; Windl, Wolfgang ; Heremans, Joseph P.</creator><creatorcontrib>He, Bin ; Wang, Yaxian ; Arguilla, Maxx Q. ; Cultrara, Nicholas D. ; Scudder, Michael R. ; Goldberger, Joshua E. ; Windl, Wolfgang ; Heremans, Joseph P.</creatorcontrib><description>Electronic materials generally exhibit a single isotropic majority carrier type, electrons or holes. Some superlattice
1
,
2
and hexagonal
3
–
5
materials exhibit opposite conduction polarities along in-plane and cross-plane directions due to multiple electron and hole bands. Here, we uncover a material genus with this behaviour that originates from the Fermi surface geometry of a single band. NaSn
2
As
2
, a layered metal, has such a Fermi surface. It displays in-plane electron and cross-plane hole conduction in thermopower and exactly the opposite polarity in the Hall effect. The small Nernst coefficient and magnetoresistance preclude multi-band transport. We label this direction-dependent carrier polarity in single-band systems ‘goniopolarity’. We expect to find goniopolarity and the Fermi surface geometry that produces it in many metals and semiconductors whose electronic structure is at the boundary between two and three dimensions. Goniopolarity may enable future explorations of complex transport phenomena that lead to unprecedented device concepts.
A single-band metal whose carriers behave as electrons or holes depending on the direction of travel is observed. The effect arises from a particular type of Fermi surface geometry.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0309-4</identifier><identifier>PMID: 30886402</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119 ; 639/301/119/995 ; 639/301/299/2736 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electronic materials ; Electronic structure ; Fermi surfaces ; Geometry ; Hall effect ; Layered materials ; Magnetoresistance ; Magnetoresistivity ; Majority carriers ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Polarity ; Surface geometry ; Transport phenomena</subject><ispartof>Nature materials, 2019-06, Vol.18 (6), p.568-572</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-147078152f6b127a763c2a75aae5a3ec542795e99c36312b6eec38f77f641c1a3</citedby><cites>FETCH-LOGICAL-c438t-147078152f6b127a763c2a75aae5a3ec542795e99c36312b6eec38f77f641c1a3</cites><orcidid>0000-0003-3996-2744 ; 0000-0003-4790-2880 ; 0000-0003-4284-604X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-019-0309-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-019-0309-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30886402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Wang, Yaxian</creatorcontrib><creatorcontrib>Arguilla, Maxx Q.</creatorcontrib><creatorcontrib>Cultrara, Nicholas D.</creatorcontrib><creatorcontrib>Scudder, Michael R.</creatorcontrib><creatorcontrib>Goldberger, Joshua E.</creatorcontrib><creatorcontrib>Windl, Wolfgang</creatorcontrib><creatorcontrib>Heremans, Joseph P.</creatorcontrib><title>The Fermi surface geometrical origin of axis-dependent conduction polarity in layered materials</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Electronic materials generally exhibit a single isotropic majority carrier type, electrons or holes. Some superlattice
1
,
2
and hexagonal
3
–
5
materials exhibit opposite conduction polarities along in-plane and cross-plane directions due to multiple electron and hole bands. Here, we uncover a material genus with this behaviour that originates from the Fermi surface geometry of a single band. NaSn
2
As
2
, a layered metal, has such a Fermi surface. It displays in-plane electron and cross-plane hole conduction in thermopower and exactly the opposite polarity in the Hall effect. The small Nernst coefficient and magnetoresistance preclude multi-band transport. We label this direction-dependent carrier polarity in single-band systems ‘goniopolarity’. We expect to find goniopolarity and the Fermi surface geometry that produces it in many metals and semiconductors whose electronic structure is at the boundary between two and three dimensions. Goniopolarity may enable future explorations of complex transport phenomena that lead to unprecedented device concepts.
A single-band metal whose carriers behave as electrons or holes depending on the direction of travel is observed. The effect arises from a particular type of Fermi surface geometry.</description><subject>639/301/119</subject><subject>639/301/119/995</subject><subject>639/301/299/2736</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electronic materials</subject><subject>Electronic structure</subject><subject>Fermi surfaces</subject><subject>Geometry</subject><subject>Hall effect</subject><subject>Layered materials</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Majority carriers</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Polarity</subject><subject>Surface geometry</subject><subject>Transport phenomena</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LJDEQhsOirJ8_YC8S8LKX1lQ-u4-L6CoIXvQcMunq2QzdnTHphp1_b4YZFQRPVVBPvVU8hPwCdgVM1NdZgtKiYtBUTLCmkj_IMUijK6k1O9j3AJwfkZOcV4xxUEr_JEeC1bWWjB8T-_wP6R2mIdA8p855pEuMA04peNfTmMIyjDR21P0PuWpxjWOL40R9HNvZTyGOdB17l8K0oQXs3QYTtnRwE6bg-nxGDrtS8HxfT8nL3e3zzX31-PT34ebPY-WlqKeqfMpMDYp3egHcOKOF584o51A5gV5JbhqFTeOFFsAXGtGLujOm0xI8OHFKfu9y1ym-zpgnO4Tsse_diHHOlkMjQTTaNAW9_IKu4pzG8p3lnNdacW3qQsGO8inmnLCz6xQGlzYWmN3atzv7tti3W_tWlp2LffK8GLD92HjXXQC-A3IZjUtMn6e_T30DfJ2POg</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>He, Bin</creator><creator>Wang, Yaxian</creator><creator>Arguilla, Maxx Q.</creator><creator>Cultrara, Nicholas D.</creator><creator>Scudder, Michael R.</creator><creator>Goldberger, Joshua E.</creator><creator>Windl, Wolfgang</creator><creator>Heremans, Joseph P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3996-2744</orcidid><orcidid>https://orcid.org/0000-0003-4790-2880</orcidid><orcidid>https://orcid.org/0000-0003-4284-604X</orcidid></search><sort><creationdate>20190601</creationdate><title>The Fermi surface geometrical origin of axis-dependent conduction polarity in layered materials</title><author>He, Bin ; Wang, Yaxian ; Arguilla, Maxx Q. ; Cultrara, Nicholas D. ; Scudder, Michael R. ; Goldberger, Joshua E. ; Windl, Wolfgang ; Heremans, Joseph P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-147078152f6b127a763c2a75aae5a3ec542795e99c36312b6eec38f77f641c1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/119</topic><topic>639/301/119/995</topic><topic>639/301/299/2736</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electronic materials</topic><topic>Electronic structure</topic><topic>Fermi surfaces</topic><topic>Geometry</topic><topic>Hall effect</topic><topic>Layered materials</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Majority carriers</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Polarity</topic><topic>Surface geometry</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Wang, Yaxian</creatorcontrib><creatorcontrib>Arguilla, Maxx Q.</creatorcontrib><creatorcontrib>Cultrara, Nicholas D.</creatorcontrib><creatorcontrib>Scudder, Michael R.</creatorcontrib><creatorcontrib>Goldberger, Joshua E.</creatorcontrib><creatorcontrib>Windl, Wolfgang</creatorcontrib><creatorcontrib>Heremans, Joseph P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Bin</au><au>Wang, Yaxian</au><au>Arguilla, Maxx Q.</au><au>Cultrara, Nicholas D.</au><au>Scudder, Michael R.</au><au>Goldberger, Joshua E.</au><au>Windl, Wolfgang</au><au>Heremans, Joseph P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Fermi surface geometrical origin of axis-dependent conduction polarity in layered materials</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>18</volume><issue>6</issue><spage>568</spage><epage>572</epage><pages>568-572</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Electronic materials generally exhibit a single isotropic majority carrier type, electrons or holes. Some superlattice
1
,
2
and hexagonal
3
–
5
materials exhibit opposite conduction polarities along in-plane and cross-plane directions due to multiple electron and hole bands. Here, we uncover a material genus with this behaviour that originates from the Fermi surface geometry of a single band. NaSn
2
As
2
, a layered metal, has such a Fermi surface. It displays in-plane electron and cross-plane hole conduction in thermopower and exactly the opposite polarity in the Hall effect. The small Nernst coefficient and magnetoresistance preclude multi-band transport. We label this direction-dependent carrier polarity in single-band systems ‘goniopolarity’. We expect to find goniopolarity and the Fermi surface geometry that produces it in many metals and semiconductors whose electronic structure is at the boundary between two and three dimensions. Goniopolarity may enable future explorations of complex transport phenomena that lead to unprecedented device concepts.
A single-band metal whose carriers behave as electrons or holes depending on the direction of travel is observed. The effect arises from a particular type of Fermi surface geometry.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30886402</pmid><doi>10.1038/s41563-019-0309-4</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3996-2744</orcidid><orcidid>https://orcid.org/0000-0003-4790-2880</orcidid><orcidid>https://orcid.org/0000-0003-4284-604X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2019-06, Vol.18 (6), p.568-572 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2194139679 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/301/119 639/301/119/995 639/301/299/2736 Biomaterials Chemistry and Materials Science Condensed Matter Physics Electronic materials Electronic structure Fermi surfaces Geometry Hall effect Layered materials Magnetoresistance Magnetoresistivity Majority carriers Materials Science Nanotechnology Optical and Electronic Materials Polarity Surface geometry Transport phenomena |
title | The Fermi surface geometrical origin of axis-dependent conduction polarity in layered materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Fermi%20surface%20geometrical%20origin%20of%20axis-dependent%20conduction%20polarity%20in%20layered%20materials&rft.jtitle=Nature%20materials&rft.au=He,%20Bin&rft.date=2019-06-01&rft.volume=18&rft.issue=6&rft.spage=568&rft.epage=572&rft.pages=568-572&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0309-4&rft_dat=%3Cproquest_cross%3E2194139679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228652678&rft_id=info:pmid/30886402&rfr_iscdi=true |