Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour
Until now, organic semiconductors have failed to achieve high performance in highly integrated, sub-100 nm transistors. Consequently, single-crystalline materials such as single-walled carbon nanotubes, MoS 2 or inorganic semiconductors are the materials of choice at the nanoscale. Here we show, usi...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2019-06, Vol.14 (6), p.579-585 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 585 |
---|---|
container_issue | 6 |
container_start_page | 579 |
container_title | Nature nanotechnology |
container_volume | 14 |
creator | Lenz, Jakob del Giudice, Fabio Geisenhof, Fabian R. Winterer, Felix Weitz, R. Thomas |
description | Until now, organic semiconductors have failed to achieve high performance in highly integrated, sub-100 nm transistors. Consequently, single-crystalline materials such as single-walled carbon nanotubes, MoS
2
or inorganic semiconductors are the materials of choice at the nanoscale. Here we show, using a vertical field-effect transistor design with a channel length of only 40 nm and a footprint of 2 × 80 × 80 nm
2
, that high electrical performance with organic polymers can be realized when using electrolyte gating. Our organic transistors combine high on-state current densities of above 3 MA cm
−2
, on/off current modulation ratios of up to 10
8
and large transconductances of up to 5,000 S m
−1
. Given the high on-state currents at such large on/off ratios, our novel structures also show promise for use in artificial neural networks, where they could operate as memristive devices with sub-100 fJ energy usage.
A vertical, electrolyte-gated organic transistor shows high on-state current densities, large on/off ratio and the potential for use in artificial neural networks. |
doi_str_mv | 10.1038/s41565-019-0407-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2194138584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235651485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2170-bc4a609c990a8abe4ada62d874c5521e6c81f61479e68c8637dd83f68c0351c83</originalsourceid><addsrcrecordid>eNp1kb9uFDEQxlcIRELgAWiQJRoKFvx31y6jiABSEA3QWnPe2TtHu_Zhe4Ouo4kELY-YJ8GnC0FCovJI_s33zczXNE8ZfcWo0K-zZKpTLWWmpZL2Lb3XHLNe6lYIo-7f1bo_ah7lfEmp4obLh82RoFp3ojfHzfUXTMU7mF4SnNCVFKddwXYNBQcS0xqCd6QkCNnnElMmeRO_ERdD8WGJSyZxiwmKj4H4QMoGyYfTm-8_3Xzz4xcnCdd-RgJhIFBtRu88TCTvAmyrKVnhBq58XNLj5sEIU8Ynt-9J8_n8zaezd-3Fx7fvz04vWsdZT9uVk9BR44yhoGGFEgbo-KB76ZTiDDun2dgx2RvstNtvOAxajLWmQjGnxUnz4qC7TfHrgrnY2WeH0wQB6zKWMyOZ0ErLij7_B72sg4Y6neVc1LMzqVWl2IFyKeaccLTb5GdIO8uo3WdkDxnZmpHdZ2Rp7Xl2q7ysZhzuOv6EUgF-AHL9CmtMf63_r_obfeKfvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235651485</pqid></control><display><type>article</type><title>Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Lenz, Jakob ; del Giudice, Fabio ; Geisenhof, Fabian R. ; Winterer, Felix ; Weitz, R. Thomas</creator><creatorcontrib>Lenz, Jakob ; del Giudice, Fabio ; Geisenhof, Fabian R. ; Winterer, Felix ; Weitz, R. Thomas</creatorcontrib><description>Until now, organic semiconductors have failed to achieve high performance in highly integrated, sub-100 nm transistors. Consequently, single-crystalline materials such as single-walled carbon nanotubes, MoS
2
or inorganic semiconductors are the materials of choice at the nanoscale. Here we show, using a vertical field-effect transistor design with a channel length of only 40 nm and a footprint of 2 × 80 × 80 nm
2
, that high electrical performance with organic polymers can be realized when using electrolyte gating. Our organic transistors combine high on-state current densities of above 3 MA cm
−2
, on/off current modulation ratios of up to 10
8
and large transconductances of up to 5,000 S m
−1
. Given the high on-state currents at such large on/off ratios, our novel structures also show promise for use in artificial neural networks, where they could operate as memristive devices with sub-100 fJ energy usage.
A vertical, electrolyte-gated organic transistor shows high on-state current densities, large on/off ratio and the potential for use in artificial neural networks.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-019-0407-0</identifier><identifier>PMID: 30886379</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/766/1130/2798 ; 639/925/357/404 ; 639/925/357/995 ; 639/925/927/1007 ; Artificial neural networks ; Channel gating ; Chemistry and Materials Science ; Current modulation ; Electrolytes ; Energy consumption ; Energy usage ; Field effect transistors ; Materials Science ; Materials selection ; Memory devices ; Molybdenum disulfide ; Nanotechnology ; Nanotechnology and Microengineering ; Nanotubes ; Neural networks ; Organic semiconductors ; Polymers ; Semiconductor devices ; Semiconductors ; Silicon ; Single crystals ; Single wall carbon nanotubes ; Transistors</subject><ispartof>Nature nanotechnology, 2019-06, Vol.14 (6), p.579-585</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2170-bc4a609c990a8abe4ada62d874c5521e6c81f61479e68c8637dd83f68c0351c83</citedby><cites>FETCH-LOGICAL-c2170-bc4a609c990a8abe4ada62d874c5521e6c81f61479e68c8637dd83f68c0351c83</cites><orcidid>0000-0001-5404-7355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30886379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenz, Jakob</creatorcontrib><creatorcontrib>del Giudice, Fabio</creatorcontrib><creatorcontrib>Geisenhof, Fabian R.</creatorcontrib><creatorcontrib>Winterer, Felix</creatorcontrib><creatorcontrib>Weitz, R. Thomas</creatorcontrib><title>Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Until now, organic semiconductors have failed to achieve high performance in highly integrated, sub-100 nm transistors. Consequently, single-crystalline materials such as single-walled carbon nanotubes, MoS
2
or inorganic semiconductors are the materials of choice at the nanoscale. Here we show, using a vertical field-effect transistor design with a channel length of only 40 nm and a footprint of 2 × 80 × 80 nm
2
, that high electrical performance with organic polymers can be realized when using electrolyte gating. Our organic transistors combine high on-state current densities of above 3 MA cm
−2
, on/off current modulation ratios of up to 10
8
and large transconductances of up to 5,000 S m
−1
. Given the high on-state currents at such large on/off ratios, our novel structures also show promise for use in artificial neural networks, where they could operate as memristive devices with sub-100 fJ energy usage.
A vertical, electrolyte-gated organic transistor shows high on-state current densities, large on/off ratio and the potential for use in artificial neural networks.</description><subject>142/126</subject><subject>639/766/1130/2798</subject><subject>639/925/357/404</subject><subject>639/925/357/995</subject><subject>639/925/927/1007</subject><subject>Artificial neural networks</subject><subject>Channel gating</subject><subject>Chemistry and Materials Science</subject><subject>Current modulation</subject><subject>Electrolytes</subject><subject>Energy consumption</subject><subject>Energy usage</subject><subject>Field effect transistors</subject><subject>Materials Science</subject><subject>Materials selection</subject><subject>Memory devices</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanotubes</subject><subject>Neural networks</subject><subject>Organic semiconductors</subject><subject>Polymers</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Single wall carbon nanotubes</subject><subject>Transistors</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kb9uFDEQxlcIRELgAWiQJRoKFvx31y6jiABSEA3QWnPe2TtHu_Zhe4Ouo4kELY-YJ8GnC0FCovJI_s33zczXNE8ZfcWo0K-zZKpTLWWmpZL2Lb3XHLNe6lYIo-7f1bo_ah7lfEmp4obLh82RoFp3ojfHzfUXTMU7mF4SnNCVFKddwXYNBQcS0xqCd6QkCNnnElMmeRO_ERdD8WGJSyZxiwmKj4H4QMoGyYfTm-8_3Xzz4xcnCdd-RgJhIFBtRu88TCTvAmyrKVnhBq58XNLj5sEIU8Ynt-9J8_n8zaezd-3Fx7fvz04vWsdZT9uVk9BR44yhoGGFEgbo-KB76ZTiDDun2dgx2RvstNtvOAxajLWmQjGnxUnz4qC7TfHrgrnY2WeH0wQB6zKWMyOZ0ErLij7_B72sg4Y6neVc1LMzqVWl2IFyKeaccLTb5GdIO8uo3WdkDxnZmpHdZ2Rp7Xl2q7ysZhzuOv6EUgF-AHL9CmtMf63_r_obfeKfvw</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Lenz, Jakob</creator><creator>del Giudice, Fabio</creator><creator>Geisenhof, Fabian R.</creator><creator>Winterer, Felix</creator><creator>Weitz, R. Thomas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5404-7355</orcidid></search><sort><creationdate>201906</creationdate><title>Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour</title><author>Lenz, Jakob ; del Giudice, Fabio ; Geisenhof, Fabian R. ; Winterer, Felix ; Weitz, R. Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2170-bc4a609c990a8abe4ada62d874c5521e6c81f61479e68c8637dd83f68c0351c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>142/126</topic><topic>639/766/1130/2798</topic><topic>639/925/357/404</topic><topic>639/925/357/995</topic><topic>639/925/927/1007</topic><topic>Artificial neural networks</topic><topic>Channel gating</topic><topic>Chemistry and Materials Science</topic><topic>Current modulation</topic><topic>Electrolytes</topic><topic>Energy consumption</topic><topic>Energy usage</topic><topic>Field effect transistors</topic><topic>Materials Science</topic><topic>Materials selection</topic><topic>Memory devices</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanotubes</topic><topic>Neural networks</topic><topic>Organic semiconductors</topic><topic>Polymers</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Single wall carbon nanotubes</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenz, Jakob</creatorcontrib><creatorcontrib>del Giudice, Fabio</creatorcontrib><creatorcontrib>Geisenhof, Fabian R.</creatorcontrib><creatorcontrib>Winterer, Felix</creatorcontrib><creatorcontrib>Weitz, R. Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenz, Jakob</au><au>del Giudice, Fabio</au><au>Geisenhof, Fabian R.</au><au>Winterer, Felix</au><au>Weitz, R. Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2019-06</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>579</spage><epage>585</epage><pages>579-585</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Until now, organic semiconductors have failed to achieve high performance in highly integrated, sub-100 nm transistors. Consequently, single-crystalline materials such as single-walled carbon nanotubes, MoS
2
or inorganic semiconductors are the materials of choice at the nanoscale. Here we show, using a vertical field-effect transistor design with a channel length of only 40 nm and a footprint of 2 × 80 × 80 nm
2
, that high electrical performance with organic polymers can be realized when using electrolyte gating. Our organic transistors combine high on-state current densities of above 3 MA cm
−2
, on/off current modulation ratios of up to 10
8
and large transconductances of up to 5,000 S m
−1
. Given the high on-state currents at such large on/off ratios, our novel structures also show promise for use in artificial neural networks, where they could operate as memristive devices with sub-100 fJ energy usage.
A vertical, electrolyte-gated organic transistor shows high on-state current densities, large on/off ratio and the potential for use in artificial neural networks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30886379</pmid><doi>10.1038/s41565-019-0407-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5404-7355</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2019-06, Vol.14 (6), p.579-585 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_2194138584 |
source | Nature; Alma/SFX Local Collection |
subjects | 142/126 639/766/1130/2798 639/925/357/404 639/925/357/995 639/925/927/1007 Artificial neural networks Channel gating Chemistry and Materials Science Current modulation Electrolytes Energy consumption Energy usage Field effect transistors Materials Science Materials selection Memory devices Molybdenum disulfide Nanotechnology Nanotechnology and Microengineering Nanotubes Neural networks Organic semiconductors Polymers Semiconductor devices Semiconductors Silicon Single crystals Single wall carbon nanotubes Transistors |
title | Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical,%20electrolyte-gated%20organic%20transistors%20show%20continuous%20operation%20in%20the%20MA%E2%80%89cm%E2%88%922%20regime%20and%20artificial%20synaptic%20behaviour&rft.jtitle=Nature%20nanotechnology&rft.au=Lenz,%20Jakob&rft.date=2019-06&rft.volume=14&rft.issue=6&rft.spage=579&rft.epage=585&rft.pages=579-585&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-019-0407-0&rft_dat=%3Cproquest_cross%3E2235651485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235651485&rft_id=info:pmid/30886379&rfr_iscdi=true |