Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour

Until now, organic semiconductors have failed to achieve high performance in highly integrated, sub-100 nm transistors. Consequently, single-crystalline materials such as single-walled carbon nanotubes, MoS 2 or inorganic semiconductors are the materials of choice at the nanoscale. Here we show, usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2019-06, Vol.14 (6), p.579-585
Hauptverfasser: Lenz, Jakob, del Giudice, Fabio, Geisenhof, Fabian R., Winterer, Felix, Weitz, R. Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 6
container_start_page 579
container_title Nature nanotechnology
container_volume 14
creator Lenz, Jakob
del Giudice, Fabio
Geisenhof, Fabian R.
Winterer, Felix
Weitz, R. Thomas
description Until now, organic semiconductors have failed to achieve high performance in highly integrated, sub-100 nm transistors. Consequently, single-crystalline materials such as single-walled carbon nanotubes, MoS 2 or inorganic semiconductors are the materials of choice at the nanoscale. Here we show, using a vertical field-effect transistor design with a channel length of only 40 nm and a footprint of 2 × 80 × 80 nm 2 , that high electrical performance with organic polymers can be realized when using electrolyte gating. Our organic transistors combine high on-state current densities of above 3 MA cm −2 , on/off current modulation ratios of up to 10 8 and large transconductances of up to 5,000 S m −1 . Given the high on-state currents at such large on/off ratios, our novel structures also show promise for use in artificial neural networks, where they could operate as memristive devices with sub-100 fJ energy usage. A vertical, electrolyte-gated organic transistor shows high on-state current densities, large on/off ratio and the potential for use in artificial neural networks.
doi_str_mv 10.1038/s41565-019-0407-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2194138584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235651485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2170-bc4a609c990a8abe4ada62d874c5521e6c81f61479e68c8637dd83f68c0351c83</originalsourceid><addsrcrecordid>eNp1kb9uFDEQxlcIRELgAWiQJRoKFvx31y6jiABSEA3QWnPe2TtHu_Zhe4Ouo4kELY-YJ8GnC0FCovJI_s33zczXNE8ZfcWo0K-zZKpTLWWmpZL2Lb3XHLNe6lYIo-7f1bo_ah7lfEmp4obLh82RoFp3ojfHzfUXTMU7mF4SnNCVFKddwXYNBQcS0xqCd6QkCNnnElMmeRO_ERdD8WGJSyZxiwmKj4H4QMoGyYfTm-8_3Xzz4xcnCdd-RgJhIFBtRu88TCTvAmyrKVnhBq58XNLj5sEIU8Ynt-9J8_n8zaezd-3Fx7fvz04vWsdZT9uVk9BR44yhoGGFEgbo-KB76ZTiDDun2dgx2RvstNtvOAxajLWmQjGnxUnz4qC7TfHrgrnY2WeH0wQB6zKWMyOZ0ErLij7_B72sg4Y6neVc1LMzqVWl2IFyKeaccLTb5GdIO8uo3WdkDxnZmpHdZ2Rp7Xl2q7ysZhzuOv6EUgF-AHL9CmtMf63_r_obfeKfvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235651485</pqid></control><display><type>article</type><title>Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Lenz, Jakob ; del Giudice, Fabio ; Geisenhof, Fabian R. ; Winterer, Felix ; Weitz, R. Thomas</creator><creatorcontrib>Lenz, Jakob ; del Giudice, Fabio ; Geisenhof, Fabian R. ; Winterer, Felix ; Weitz, R. Thomas</creatorcontrib><description>Until now, organic semiconductors have failed to achieve high performance in highly integrated, sub-100 nm transistors. Consequently, single-crystalline materials such as single-walled carbon nanotubes, MoS 2 or inorganic semiconductors are the materials of choice at the nanoscale. Here we show, using a vertical field-effect transistor design with a channel length of only 40 nm and a footprint of 2 × 80 × 80 nm 2 , that high electrical performance with organic polymers can be realized when using electrolyte gating. Our organic transistors combine high on-state current densities of above 3 MA cm −2 , on/off current modulation ratios of up to 10 8 and large transconductances of up to 5,000 S m −1 . Given the high on-state currents at such large on/off ratios, our novel structures also show promise for use in artificial neural networks, where they could operate as memristive devices with sub-100 fJ energy usage. A vertical, electrolyte-gated organic transistor shows high on-state current densities, large on/off ratio and the potential for use in artificial neural networks.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-019-0407-0</identifier><identifier>PMID: 30886379</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/766/1130/2798 ; 639/925/357/404 ; 639/925/357/995 ; 639/925/927/1007 ; Artificial neural networks ; Channel gating ; Chemistry and Materials Science ; Current modulation ; Electrolytes ; Energy consumption ; Energy usage ; Field effect transistors ; Materials Science ; Materials selection ; Memory devices ; Molybdenum disulfide ; Nanotechnology ; Nanotechnology and Microengineering ; Nanotubes ; Neural networks ; Organic semiconductors ; Polymers ; Semiconductor devices ; Semiconductors ; Silicon ; Single crystals ; Single wall carbon nanotubes ; Transistors</subject><ispartof>Nature nanotechnology, 2019-06, Vol.14 (6), p.579-585</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2170-bc4a609c990a8abe4ada62d874c5521e6c81f61479e68c8637dd83f68c0351c83</citedby><cites>FETCH-LOGICAL-c2170-bc4a609c990a8abe4ada62d874c5521e6c81f61479e68c8637dd83f68c0351c83</cites><orcidid>0000-0001-5404-7355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30886379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenz, Jakob</creatorcontrib><creatorcontrib>del Giudice, Fabio</creatorcontrib><creatorcontrib>Geisenhof, Fabian R.</creatorcontrib><creatorcontrib>Winterer, Felix</creatorcontrib><creatorcontrib>Weitz, R. Thomas</creatorcontrib><title>Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Until now, organic semiconductors have failed to achieve high performance in highly integrated, sub-100 nm transistors. Consequently, single-crystalline materials such as single-walled carbon nanotubes, MoS 2 or inorganic semiconductors are the materials of choice at the nanoscale. Here we show, using a vertical field-effect transistor design with a channel length of only 40 nm and a footprint of 2 × 80 × 80 nm 2 , that high electrical performance with organic polymers can be realized when using electrolyte gating. Our organic transistors combine high on-state current densities of above 3 MA cm −2 , on/off current modulation ratios of up to 10 8 and large transconductances of up to 5,000 S m −1 . Given the high on-state currents at such large on/off ratios, our novel structures also show promise for use in artificial neural networks, where they could operate as memristive devices with sub-100 fJ energy usage. A vertical, electrolyte-gated organic transistor shows high on-state current densities, large on/off ratio and the potential for use in artificial neural networks.</description><subject>142/126</subject><subject>639/766/1130/2798</subject><subject>639/925/357/404</subject><subject>639/925/357/995</subject><subject>639/925/927/1007</subject><subject>Artificial neural networks</subject><subject>Channel gating</subject><subject>Chemistry and Materials Science</subject><subject>Current modulation</subject><subject>Electrolytes</subject><subject>Energy consumption</subject><subject>Energy usage</subject><subject>Field effect transistors</subject><subject>Materials Science</subject><subject>Materials selection</subject><subject>Memory devices</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanotubes</subject><subject>Neural networks</subject><subject>Organic semiconductors</subject><subject>Polymers</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Single wall carbon nanotubes</subject><subject>Transistors</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kb9uFDEQxlcIRELgAWiQJRoKFvx31y6jiABSEA3QWnPe2TtHu_Zhe4Ouo4kELY-YJ8GnC0FCovJI_s33zczXNE8ZfcWo0K-zZKpTLWWmpZL2Lb3XHLNe6lYIo-7f1bo_ah7lfEmp4obLh82RoFp3ojfHzfUXTMU7mF4SnNCVFKddwXYNBQcS0xqCd6QkCNnnElMmeRO_ERdD8WGJSyZxiwmKj4H4QMoGyYfTm-8_3Xzz4xcnCdd-RgJhIFBtRu88TCTvAmyrKVnhBq58XNLj5sEIU8Ynt-9J8_n8zaezd-3Fx7fvz04vWsdZT9uVk9BR44yhoGGFEgbo-KB76ZTiDDun2dgx2RvstNtvOAxajLWmQjGnxUnz4qC7TfHrgrnY2WeH0wQB6zKWMyOZ0ErLij7_B72sg4Y6neVc1LMzqVWl2IFyKeaccLTb5GdIO8uo3WdkDxnZmpHdZ2Rp7Xl2q7ysZhzuOv6EUgF-AHL9CmtMf63_r_obfeKfvw</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Lenz, Jakob</creator><creator>del Giudice, Fabio</creator><creator>Geisenhof, Fabian R.</creator><creator>Winterer, Felix</creator><creator>Weitz, R. Thomas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5404-7355</orcidid></search><sort><creationdate>201906</creationdate><title>Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour</title><author>Lenz, Jakob ; del Giudice, Fabio ; Geisenhof, Fabian R. ; Winterer, Felix ; Weitz, R. Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2170-bc4a609c990a8abe4ada62d874c5521e6c81f61479e68c8637dd83f68c0351c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>142/126</topic><topic>639/766/1130/2798</topic><topic>639/925/357/404</topic><topic>639/925/357/995</topic><topic>639/925/927/1007</topic><topic>Artificial neural networks</topic><topic>Channel gating</topic><topic>Chemistry and Materials Science</topic><topic>Current modulation</topic><topic>Electrolytes</topic><topic>Energy consumption</topic><topic>Energy usage</topic><topic>Field effect transistors</topic><topic>Materials Science</topic><topic>Materials selection</topic><topic>Memory devices</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanotubes</topic><topic>Neural networks</topic><topic>Organic semiconductors</topic><topic>Polymers</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Single wall carbon nanotubes</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenz, Jakob</creatorcontrib><creatorcontrib>del Giudice, Fabio</creatorcontrib><creatorcontrib>Geisenhof, Fabian R.</creatorcontrib><creatorcontrib>Winterer, Felix</creatorcontrib><creatorcontrib>Weitz, R. Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenz, Jakob</au><au>del Giudice, Fabio</au><au>Geisenhof, Fabian R.</au><au>Winterer, Felix</au><au>Weitz, R. Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2019-06</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>579</spage><epage>585</epage><pages>579-585</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Until now, organic semiconductors have failed to achieve high performance in highly integrated, sub-100 nm transistors. Consequently, single-crystalline materials such as single-walled carbon nanotubes, MoS 2 or inorganic semiconductors are the materials of choice at the nanoscale. Here we show, using a vertical field-effect transistor design with a channel length of only 40 nm and a footprint of 2 × 80 × 80 nm 2 , that high electrical performance with organic polymers can be realized when using electrolyte gating. Our organic transistors combine high on-state current densities of above 3 MA cm −2 , on/off current modulation ratios of up to 10 8 and large transconductances of up to 5,000 S m −1 . Given the high on-state currents at such large on/off ratios, our novel structures also show promise for use in artificial neural networks, where they could operate as memristive devices with sub-100 fJ energy usage. A vertical, electrolyte-gated organic transistor shows high on-state current densities, large on/off ratio and the potential for use in artificial neural networks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30886379</pmid><doi>10.1038/s41565-019-0407-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5404-7355</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2019-06, Vol.14 (6), p.579-585
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2194138584
source Nature; Alma/SFX Local Collection
subjects 142/126
639/766/1130/2798
639/925/357/404
639/925/357/995
639/925/927/1007
Artificial neural networks
Channel gating
Chemistry and Materials Science
Current modulation
Electrolytes
Energy consumption
Energy usage
Field effect transistors
Materials Science
Materials selection
Memory devices
Molybdenum disulfide
Nanotechnology
Nanotechnology and Microengineering
Nanotubes
Neural networks
Organic semiconductors
Polymers
Semiconductor devices
Semiconductors
Silicon
Single crystals
Single wall carbon nanotubes
Transistors
title Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical,%20electrolyte-gated%20organic%20transistors%20show%20continuous%20operation%20in%20the%20MA%E2%80%89cm%E2%88%922%20regime%20and%20artificial%20synaptic%20behaviour&rft.jtitle=Nature%20nanotechnology&rft.au=Lenz,%20Jakob&rft.date=2019-06&rft.volume=14&rft.issue=6&rft.spage=579&rft.epage=585&rft.pages=579-585&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-019-0407-0&rft_dat=%3Cproquest_cross%3E2235651485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235651485&rft_id=info:pmid/30886379&rfr_iscdi=true