Molecular dynamics of starch and water during bread making monitored with temperature-controlled time domain 1H NMR
Time domain proton nuclear magnetic resonance (TD 1H NMR) was applied in a temperature-controlled mode to in situ study the timing and extent of starch transitions and water redistribution during bread making. Changes in proton population areas during initial baking (≤ 60 °C) were attributed to wate...
Gespeichert in:
Veröffentlicht in: | Food research international 2019-05, Vol.119, p.675-682 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 682 |
---|---|
container_issue | |
container_start_page | 675 |
container_title | Food research international |
container_volume | 119 |
creator | Nivelle, Mieke A. Beghin, Alice S. Bosmans, Geertrui M. Delcour, Jan A. |
description | Time domain proton nuclear magnetic resonance (TD 1H NMR) was applied in a temperature-controlled mode to in situ study the timing and extent of starch transitions and water redistribution during bread making. Changes in proton population areas during initial baking (≤ 60 °C) were attributed to water absorption by starch and some initial amylose leaching. During subsequent heating (60–90 °C), proton population areas changed because of amylopectin crystal melting and amylose leaching. Granule swelling and amylose leaching increased the system's viscosity and thereby decreased the proton mobility. After crumb setting at about 65 °C, proton mobility increased with a temperature dependence according to Arrhenius' law. During cooling, amylose crystallization increased the portion of rigid protons and decreased the gel network's proton mobility. The uniqueness of this study is that differential scanning calorimetry, colorimetric and gravimetric analyses underpinned NMR data interpretation and the usefulness of the online method to study molecular dynamics during bread making.
•Dynamics of starch and water during bread making were monitored with an NMR method.•Gelatinization associated phenomena caused changes in NMR proton populations.•Mobility of mobile protons changed with temperature according to Arrhenius' law.•DSC, colorimetric and gravimetric analyses underpinned NMR data interpretation. |
doi_str_mv | 10.1016/j.foodres.2018.10.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2194134945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963996918308317</els_id><sourcerecordid>2194134945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2345-397a815a7c0679a9dc3cb73f0f94fd005ab76c39192c615bf98914eda043b8be3</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLgOPoJQpZuOiaTpG1WIuILfIDoOtwmt5qxbcYkVfx7O457V5d7XnAOIcecLTjj5elq0YbgIqbFkvF6whZMqh0y43UliopLtUtmTJei0LrU--QgpRVjrFSVnpF0Hzq0YweRuu8Bem8TDS1NGaJ9ozA4-gUZJ3KMfnilTURwtIf3zdOHwecQcdL4_EYz9muMkMeIhQ1DjqHrJi77HqkLPfiB8hv6cP90SPZa6BIe_d05ebm6fL64Ke4er28vzu8KuxRSFUJXUHMFlWVlpUE7K2xTiZa1WraOMQVNVVqhuV7akqum1bXmEh0wKZq6QTEnJ9vcdQwfI6Zsep8sdh0MGMZkllxLLqSWapKqrdTGkFLE1qyj7yF-G87MZmSzMn8jm83IG5j9-s62Ppx6fHqMJlmPg0XnI9psXPD_JPwAFfyJ1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194134945</pqid></control><display><type>article</type><title>Molecular dynamics of starch and water during bread making monitored with temperature-controlled time domain 1H NMR</title><source>Elsevier ScienceDirect Journals</source><creator>Nivelle, Mieke A. ; Beghin, Alice S. ; Bosmans, Geertrui M. ; Delcour, Jan A.</creator><creatorcontrib>Nivelle, Mieke A. ; Beghin, Alice S. ; Bosmans, Geertrui M. ; Delcour, Jan A.</creatorcontrib><description>Time domain proton nuclear magnetic resonance (TD 1H NMR) was applied in a temperature-controlled mode to in situ study the timing and extent of starch transitions and water redistribution during bread making. Changes in proton population areas during initial baking (≤ 60 °C) were attributed to water absorption by starch and some initial amylose leaching. During subsequent heating (60–90 °C), proton population areas changed because of amylopectin crystal melting and amylose leaching. Granule swelling and amylose leaching increased the system's viscosity and thereby decreased the proton mobility. After crumb setting at about 65 °C, proton mobility increased with a temperature dependence according to Arrhenius' law. During cooling, amylose crystallization increased the portion of rigid protons and decreased the gel network's proton mobility. The uniqueness of this study is that differential scanning calorimetry, colorimetric and gravimetric analyses underpinned NMR data interpretation and the usefulness of the online method to study molecular dynamics during bread making.
•Dynamics of starch and water during bread making were monitored with an NMR method.•Gelatinization associated phenomena caused changes in NMR proton populations.•Mobility of mobile protons changed with temperature according to Arrhenius' law.•DSC, colorimetric and gravimetric analyses underpinned NMR data interpretation.</description><identifier>ISSN: 0963-9969</identifier><identifier>EISSN: 1873-7145</identifier><identifier>DOI: 10.1016/j.foodres.2018.10.045</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bread making ; In situ analysis ; Proton mobility ; Starch ; Temperature-controlled time domain proton nuclear magnetic resonance ; Water</subject><ispartof>Food research international, 2019-05, Vol.119, p.675-682</ispartof><rights>2018 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2345-397a815a7c0679a9dc3cb73f0f94fd005ab76c39192c615bf98914eda043b8be3</citedby><cites>FETCH-LOGICAL-c2345-397a815a7c0679a9dc3cb73f0f94fd005ab76c39192c615bf98914eda043b8be3</cites><orcidid>0000-0002-8591-8376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.foodres.2018.10.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Nivelle, Mieke A.</creatorcontrib><creatorcontrib>Beghin, Alice S.</creatorcontrib><creatorcontrib>Bosmans, Geertrui M.</creatorcontrib><creatorcontrib>Delcour, Jan A.</creatorcontrib><title>Molecular dynamics of starch and water during bread making monitored with temperature-controlled time domain 1H NMR</title><title>Food research international</title><description>Time domain proton nuclear magnetic resonance (TD 1H NMR) was applied in a temperature-controlled mode to in situ study the timing and extent of starch transitions and water redistribution during bread making. Changes in proton population areas during initial baking (≤ 60 °C) were attributed to water absorption by starch and some initial amylose leaching. During subsequent heating (60–90 °C), proton population areas changed because of amylopectin crystal melting and amylose leaching. Granule swelling and amylose leaching increased the system's viscosity and thereby decreased the proton mobility. After crumb setting at about 65 °C, proton mobility increased with a temperature dependence according to Arrhenius' law. During cooling, amylose crystallization increased the portion of rigid protons and decreased the gel network's proton mobility. The uniqueness of this study is that differential scanning calorimetry, colorimetric and gravimetric analyses underpinned NMR data interpretation and the usefulness of the online method to study molecular dynamics during bread making.
•Dynamics of starch and water during bread making were monitored with an NMR method.•Gelatinization associated phenomena caused changes in NMR proton populations.•Mobility of mobile protons changed with temperature according to Arrhenius' law.•DSC, colorimetric and gravimetric analyses underpinned NMR data interpretation.</description><subject>Bread making</subject><subject>In situ analysis</subject><subject>Proton mobility</subject><subject>Starch</subject><subject>Temperature-controlled time domain proton nuclear magnetic resonance</subject><subject>Water</subject><issn>0963-9969</issn><issn>1873-7145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLgOPoJQpZuOiaTpG1WIuILfIDoOtwmt5qxbcYkVfx7O457V5d7XnAOIcecLTjj5elq0YbgIqbFkvF6whZMqh0y43UliopLtUtmTJei0LrU--QgpRVjrFSVnpF0Hzq0YweRuu8Bem8TDS1NGaJ9ozA4-gUZJ3KMfnilTURwtIf3zdOHwecQcdL4_EYz9muMkMeIhQ1DjqHrJi77HqkLPfiB8hv6cP90SPZa6BIe_d05ebm6fL64Ke4er28vzu8KuxRSFUJXUHMFlWVlpUE7K2xTiZa1WraOMQVNVVqhuV7akqum1bXmEh0wKZq6QTEnJ9vcdQwfI6Zsep8sdh0MGMZkllxLLqSWapKqrdTGkFLE1qyj7yF-G87MZmSzMn8jm83IG5j9-s62Ppx6fHqMJlmPg0XnI9psXPD_JPwAFfyJ1g</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Nivelle, Mieke A.</creator><creator>Beghin, Alice S.</creator><creator>Bosmans, Geertrui M.</creator><creator>Delcour, Jan A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8591-8376</orcidid></search><sort><creationdate>201905</creationdate><title>Molecular dynamics of starch and water during bread making monitored with temperature-controlled time domain 1H NMR</title><author>Nivelle, Mieke A. ; Beghin, Alice S. ; Bosmans, Geertrui M. ; Delcour, Jan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2345-397a815a7c0679a9dc3cb73f0f94fd005ab76c39192c615bf98914eda043b8be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bread making</topic><topic>In situ analysis</topic><topic>Proton mobility</topic><topic>Starch</topic><topic>Temperature-controlled time domain proton nuclear magnetic resonance</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nivelle, Mieke A.</creatorcontrib><creatorcontrib>Beghin, Alice S.</creatorcontrib><creatorcontrib>Bosmans, Geertrui M.</creatorcontrib><creatorcontrib>Delcour, Jan A.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Food research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nivelle, Mieke A.</au><au>Beghin, Alice S.</au><au>Bosmans, Geertrui M.</au><au>Delcour, Jan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics of starch and water during bread making monitored with temperature-controlled time domain 1H NMR</atitle><jtitle>Food research international</jtitle><date>2019-05</date><risdate>2019</risdate><volume>119</volume><spage>675</spage><epage>682</epage><pages>675-682</pages><issn>0963-9969</issn><eissn>1873-7145</eissn><abstract>Time domain proton nuclear magnetic resonance (TD 1H NMR) was applied in a temperature-controlled mode to in situ study the timing and extent of starch transitions and water redistribution during bread making. Changes in proton population areas during initial baking (≤ 60 °C) were attributed to water absorption by starch and some initial amylose leaching. During subsequent heating (60–90 °C), proton population areas changed because of amylopectin crystal melting and amylose leaching. Granule swelling and amylose leaching increased the system's viscosity and thereby decreased the proton mobility. After crumb setting at about 65 °C, proton mobility increased with a temperature dependence according to Arrhenius' law. During cooling, amylose crystallization increased the portion of rigid protons and decreased the gel network's proton mobility. The uniqueness of this study is that differential scanning calorimetry, colorimetric and gravimetric analyses underpinned NMR data interpretation and the usefulness of the online method to study molecular dynamics during bread making.
•Dynamics of starch and water during bread making were monitored with an NMR method.•Gelatinization associated phenomena caused changes in NMR proton populations.•Mobility of mobile protons changed with temperature according to Arrhenius' law.•DSC, colorimetric and gravimetric analyses underpinned NMR data interpretation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.foodres.2018.10.045</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8591-8376</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-9969 |
ispartof | Food research international, 2019-05, Vol.119, p.675-682 |
issn | 0963-9969 1873-7145 |
language | eng |
recordid | cdi_proquest_miscellaneous_2194134945 |
source | Elsevier ScienceDirect Journals |
subjects | Bread making In situ analysis Proton mobility Starch Temperature-controlled time domain proton nuclear magnetic resonance Water |
title | Molecular dynamics of starch and water during bread making monitored with temperature-controlled time domain 1H NMR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20of%20starch%20and%20water%20during%20bread%20making%20monitored%20with%20temperature-controlled%20time%20domain%201H%20NMR&rft.jtitle=Food%20research%20international&rft.au=Nivelle,%20Mieke%20A.&rft.date=2019-05&rft.volume=119&rft.spage=675&rft.epage=682&rft.pages=675-682&rft.issn=0963-9969&rft.eissn=1873-7145&rft_id=info:doi/10.1016/j.foodres.2018.10.045&rft_dat=%3Cproquest_cross%3E2194134945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194134945&rft_id=info:pmid/&rft_els_id=S0963996918308317&rfr_iscdi=true |