Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations

Homologous recombination-based recombineering is a widely used DNA cloning and modification technique; recombineering efficiency improvement would be helpful for high-throughput DNA manipulation. Escherichia coli primase DnaG variants, such as DnaG Q576A and DnaG K580A, increase the recombineering e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2019-04, Vol.103 (8), p.3559-3570
Hauptverfasser: Li, Jing, Sun, Jian, Gao, Xinyue, Wu, Zhixin, Shang, Guangdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3570
container_issue 8
container_start_page 3559
container_title Applied microbiology and biotechnology
container_volume 103
creator Li, Jing
Sun, Jian
Gao, Xinyue
Wu, Zhixin
Shang, Guangdong
description Homologous recombination-based recombineering is a widely used DNA cloning and modification technique; recombineering efficiency improvement would be helpful for high-throughput DNA manipulation. Escherichia coli primase DnaG variants, such as DnaG Q576A and DnaG K580A, increase the recombineering efficiency via impairment of the interaction between primase and the replisome and boost the loading of more ssDNA on the replication fork. Bacterial adaptive immunity origin CRISPR-Cas9 is emerging as a powerful genome editing strategy. In this study, ssDNA recombineering and CRISPR-Cas9 were combined for the generation of DnaG variants. The tightly regulated Red operon expression cassette and tightly regulated Cas9 expression cassette were integrated into one chloroamphenicol resistance, p15A replicon-based vector. A self-curing, kanamycin resistance, p15A replicon-based plasmid was applied for the plasmid elimination after genome editing. The genome editing efficiency was as high as 100%. The recombineering efficiency of the strains harboring the DnaG variants was assayed via the kanamycin resistance gene repair as well as the chromosomal gene deletion experiments. The established genome editing strategy will expedite the DnaG structure and function relationship study as well as the metabolic engineering and synthetic biology applications.
doi_str_mv 10.1007/s00253-019-09744-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2193603103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581343823</galeid><sourcerecordid>A581343823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-c33b52dc9ab80dbe320c09baa005e61810ea723895d41b1d6f6c28860824238a3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1ERYfCC7BAkdi0C5drO3Hs5Sj9YaSqRVNYW47jzLhK4sFOBLw9DlNaDULIC0vnfufoXh2E3hE4JwDlxwhAC4aBSAyyzHMsX6AFyRnFwEn-Ei2AlAUuCymO0esYHwAIFZy_QscMRClBwgKtKz_tOjdsshgvbpdZsMb3tRusDbP43Y3brFqv7j-vcaWjzFofsstotmlstk5nxncuuxj0ddZPox6dH-IbdNTqLtq3j_8J-np1-aX6hG_urlfV8gabgrARG8bqgjZG6lpAU1tGwYCstQYoLCeCgNUlZUIWTU5q0vCWGyoEB0HzJGt2gk73ubvgv002jqp30diu04P1U1SUSMaBEWAJ_fAX-uCnMKTtZorIHDiTz9RGd1a5ofVj0GYOVctCEJYzQees839Q6TW2d8YPtnVJPzCcHRgSM9of40ZPMarV_fqQpXvWBB9jsK3aBdfr8FMRUHPpal-6SqWr36Wree_3j9dNdW-bJ8uflhPA9kDcza3a8Hz-f2J_ASpxsiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191940639</pqid></control><display><type>article</type><title>Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Jing ; Sun, Jian ; Gao, Xinyue ; Wu, Zhixin ; Shang, Guangdong</creator><creatorcontrib>Li, Jing ; Sun, Jian ; Gao, Xinyue ; Wu, Zhixin ; Shang, Guangdong</creatorcontrib><description>Homologous recombination-based recombineering is a widely used DNA cloning and modification technique; recombineering efficiency improvement would be helpful for high-throughput DNA manipulation. Escherichia coli primase DnaG variants, such as DnaG Q576A and DnaG K580A, increase the recombineering efficiency via impairment of the interaction between primase and the replisome and boost the loading of more ssDNA on the replication fork. Bacterial adaptive immunity origin CRISPR-Cas9 is emerging as a powerful genome editing strategy. In this study, ssDNA recombineering and CRISPR-Cas9 were combined for the generation of DnaG variants. The tightly regulated Red operon expression cassette and tightly regulated Cas9 expression cassette were integrated into one chloroamphenicol resistance, p15A replicon-based vector. A self-curing, kanamycin resistance, p15A replicon-based plasmid was applied for the plasmid elimination after genome editing. The genome editing efficiency was as high as 100%. The recombineering efficiency of the strains harboring the DnaG variants was assayed via the kanamycin resistance gene repair as well as the chromosomal gene deletion experiments. The established genome editing strategy will expedite the DnaG structure and function relationship study as well as the metabolic engineering and synthetic biology applications.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-019-09744-9</identifier><identifier>PMID: 30879090</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive immunity ; Antibacterial agents ; Bacteria ; Biological products ; Biomedical and Life Sciences ; Biotechnology ; Chromosome deletion ; Chromosomes ; Clonal deletion ; Cloning ; CRISPR ; CRISPR-Cas Systems ; Deoxyribonucleic acid ; DNA ; DNA primase ; DNA Primase - genetics ; DNA Primase - metabolism ; DNA, Bacterial - genetics ; DNA, Single-Stranded - genetics ; E coli ; Editing ; Efficiency ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Gene deletion ; Gene Editing ; Gene mutation ; Genes ; Genetic aspects ; Genetic Engineering - methods ; Genetic research ; Genome editing ; Genome, Bacterial - genetics ; Genomes ; Genomics ; Homologous Recombination ; Homology ; Immunity ; Immunotherapy ; Kanamycin ; Life Sciences ; Metabolic engineering ; Methods ; Methods and Protocols ; Microbial Genetics and Genomics ; Microbiology ; Mutation ; Neomycin ; Plasmids - genetics ; Plasmids - metabolism ; Primase ; Structure-function relationships</subject><ispartof>Applied microbiology and biotechnology, 2019-04, Vol.103 (8), p.3559-3570</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-c33b52dc9ab80dbe320c09baa005e61810ea723895d41b1d6f6c28860824238a3</citedby><cites>FETCH-LOGICAL-c513t-c33b52dc9ab80dbe320c09baa005e61810ea723895d41b1d6f6c28860824238a3</cites><orcidid>0000-0001-6142-3785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-019-09744-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-019-09744-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30879090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Gao, Xinyue</creatorcontrib><creatorcontrib>Wu, Zhixin</creatorcontrib><creatorcontrib>Shang, Guangdong</creatorcontrib><title>Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Homologous recombination-based recombineering is a widely used DNA cloning and modification technique; recombineering efficiency improvement would be helpful for high-throughput DNA manipulation. Escherichia coli primase DnaG variants, such as DnaG Q576A and DnaG K580A, increase the recombineering efficiency via impairment of the interaction between primase and the replisome and boost the loading of more ssDNA on the replication fork. Bacterial adaptive immunity origin CRISPR-Cas9 is emerging as a powerful genome editing strategy. In this study, ssDNA recombineering and CRISPR-Cas9 were combined for the generation of DnaG variants. The tightly regulated Red operon expression cassette and tightly regulated Cas9 expression cassette were integrated into one chloroamphenicol resistance, p15A replicon-based vector. A self-curing, kanamycin resistance, p15A replicon-based plasmid was applied for the plasmid elimination after genome editing. The genome editing efficiency was as high as 100%. The recombineering efficiency of the strains harboring the DnaG variants was assayed via the kanamycin resistance gene repair as well as the chromosomal gene deletion experiments. The established genome editing strategy will expedite the DnaG structure and function relationship study as well as the metabolic engineering and synthetic biology applications.</description><subject>Adaptive immunity</subject><subject>Antibacterial agents</subject><subject>Bacteria</subject><subject>Biological products</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome deletion</subject><subject>Chromosomes</subject><subject>Clonal deletion</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA primase</subject><subject>DNA Primase - genetics</subject><subject>DNA Primase - metabolism</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Single-Stranded - genetics</subject><subject>E coli</subject><subject>Editing</subject><subject>Efficiency</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Gene deletion</subject><subject>Gene Editing</subject><subject>Gene mutation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic Engineering - methods</subject><subject>Genetic research</subject><subject>Genome editing</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Homologous Recombination</subject><subject>Homology</subject><subject>Immunity</subject><subject>Immunotherapy</subject><subject>Kanamycin</subject><subject>Life Sciences</subject><subject>Metabolic engineering</subject><subject>Methods</subject><subject>Methods and Protocols</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mutation</subject><subject>Neomycin</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>Primase</subject><subject>Structure-function relationships</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhS1ERYfCC7BAkdi0C5drO3Hs5Sj9YaSqRVNYW47jzLhK4sFOBLw9DlNaDULIC0vnfufoXh2E3hE4JwDlxwhAC4aBSAyyzHMsX6AFyRnFwEn-Ei2AlAUuCymO0esYHwAIFZy_QscMRClBwgKtKz_tOjdsshgvbpdZsMb3tRusDbP43Y3brFqv7j-vcaWjzFofsstotmlstk5nxncuuxj0ddZPox6dH-IbdNTqLtq3j_8J-np1-aX6hG_urlfV8gabgrARG8bqgjZG6lpAU1tGwYCstQYoLCeCgNUlZUIWTU5q0vCWGyoEB0HzJGt2gk73ubvgv002jqp30diu04P1U1SUSMaBEWAJ_fAX-uCnMKTtZorIHDiTz9RGd1a5ofVj0GYOVctCEJYzQees839Q6TW2d8YPtnVJPzCcHRgSM9of40ZPMarV_fqQpXvWBB9jsK3aBdfr8FMRUHPpal-6SqWr36Wree_3j9dNdW-bJ8uflhPA9kDcza3a8Hz-f2J_ASpxsiU</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Li, Jing</creator><creator>Sun, Jian</creator><creator>Gao, Xinyue</creator><creator>Wu, Zhixin</creator><creator>Shang, Guangdong</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6142-3785</orcidid></search><sort><creationdate>201904</creationdate><title>Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations</title><author>Li, Jing ; Sun, Jian ; Gao, Xinyue ; Wu, Zhixin ; Shang, Guangdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-c33b52dc9ab80dbe320c09baa005e61810ea723895d41b1d6f6c28860824238a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive immunity</topic><topic>Antibacterial agents</topic><topic>Bacteria</topic><topic>Biological products</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome deletion</topic><topic>Chromosomes</topic><topic>Clonal deletion</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA primase</topic><topic>DNA Primase - genetics</topic><topic>DNA Primase - metabolism</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Single-Stranded - genetics</topic><topic>E coli</topic><topic>Editing</topic><topic>Efficiency</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Gene deletion</topic><topic>Gene Editing</topic><topic>Gene mutation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic Engineering - methods</topic><topic>Genetic research</topic><topic>Genome editing</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Homologous Recombination</topic><topic>Homology</topic><topic>Immunity</topic><topic>Immunotherapy</topic><topic>Kanamycin</topic><topic>Life Sciences</topic><topic>Metabolic engineering</topic><topic>Methods</topic><topic>Methods and Protocols</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mutation</topic><topic>Neomycin</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>Primase</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Gao, Xinyue</creatorcontrib><creatorcontrib>Wu, Zhixin</creatorcontrib><creatorcontrib>Shang, Guangdong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jing</au><au>Sun, Jian</au><au>Gao, Xinyue</au><au>Wu, Zhixin</au><au>Shang, Guangdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2019-04</date><risdate>2019</risdate><volume>103</volume><issue>8</issue><spage>3559</spage><epage>3570</epage><pages>3559-3570</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Homologous recombination-based recombineering is a widely used DNA cloning and modification technique; recombineering efficiency improvement would be helpful for high-throughput DNA manipulation. Escherichia coli primase DnaG variants, such as DnaG Q576A and DnaG K580A, increase the recombineering efficiency via impairment of the interaction between primase and the replisome and boost the loading of more ssDNA on the replication fork. Bacterial adaptive immunity origin CRISPR-Cas9 is emerging as a powerful genome editing strategy. In this study, ssDNA recombineering and CRISPR-Cas9 were combined for the generation of DnaG variants. The tightly regulated Red operon expression cassette and tightly regulated Cas9 expression cassette were integrated into one chloroamphenicol resistance, p15A replicon-based vector. A self-curing, kanamycin resistance, p15A replicon-based plasmid was applied for the plasmid elimination after genome editing. The genome editing efficiency was as high as 100%. The recombineering efficiency of the strains harboring the DnaG variants was assayed via the kanamycin resistance gene repair as well as the chromosomal gene deletion experiments. The established genome editing strategy will expedite the DnaG structure and function relationship study as well as the metabolic engineering and synthetic biology applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30879090</pmid><doi>10.1007/s00253-019-09744-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6142-3785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2019-04, Vol.103 (8), p.3559-3570
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2193603103
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adaptive immunity
Antibacterial agents
Bacteria
Biological products
Biomedical and Life Sciences
Biotechnology
Chromosome deletion
Chromosomes
Clonal deletion
Cloning
CRISPR
CRISPR-Cas Systems
Deoxyribonucleic acid
DNA
DNA primase
DNA Primase - genetics
DNA Primase - metabolism
DNA, Bacterial - genetics
DNA, Single-Stranded - genetics
E coli
Editing
Efficiency
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Gene deletion
Gene Editing
Gene mutation
Genes
Genetic aspects
Genetic Engineering - methods
Genetic research
Genome editing
Genome, Bacterial - genetics
Genomes
Genomics
Homologous Recombination
Homology
Immunity
Immunotherapy
Kanamycin
Life Sciences
Metabolic engineering
Methods
Methods and Protocols
Microbial Genetics and Genomics
Microbiology
Mutation
Neomycin
Plasmids - genetics
Plasmids - metabolism
Primase
Structure-function relationships
title Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20ssDNA%20recombineering%20with%20CRISPR-Cas9%20for%20Escherichia%20coli%20DnaG%20mutations&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Li,%20Jing&rft.date=2019-04&rft.volume=103&rft.issue=8&rft.spage=3559&rft.epage=3570&rft.pages=3559-3570&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-019-09744-9&rft_dat=%3Cgale_proqu%3EA581343823%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191940639&rft_id=info:pmid/30879090&rft_galeid=A581343823&rfr_iscdi=true