Deconstructing Odorant Identity via Primacy in Dual Networks

In the olfactory system, odor percepts retain their identity despite substantial variations in concentration, timing, and background. We study a novel strategy for encoding intensity-invariant stimulus identity that is based on representing relative rather than absolute values of stimulus features....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2019-04, Vol.31 (4), p.710-737
Hauptverfasser: Kepple, Daniel R., Giaffar, Hamza, Rinberg, Dmitry, Koulakov, Alexei A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 737
container_issue 4
container_start_page 710
container_title Neural computation
container_volume 31
creator Kepple, Daniel R.
Giaffar, Hamza
Rinberg, Dmitry
Koulakov, Alexei A.
description In the olfactory system, odor percepts retain their identity despite substantial variations in concentration, timing, and background. We study a novel strategy for encoding intensity-invariant stimulus identity that is based on representing relative rather than absolute values of stimulus features. For example, in what is known as the primacy coding model, odorant identities are represented by the conditions that some odorant receptors are activated more strongly than others. Because, in this scheme, odorant identity depends only on the relative amplitudes of olfactory receptor responses, identity is invariant to changes in both intensity and monotonic nonlinear transformations of its neuronal responses. Here we show that sparse vectors representing odorant mixtures can be recovered in a compressed sensing framework via elastic net loss minimization. In the primacy model, this minimization is performed under the constraint that some receptors respond to a given odorant more strongly than others. Using duality transformation, we show that this constrained optimization problem can be solved by a neural network whose Lyapunov function represents the dual Lagrangian and whose neural responses represent the Lagrange coefficients of primacy and other constraints. The connectivity in such a dual network resembles known features of connectivity in olfactory circuits. We thus propose that networks in the piriform cortex implement dual computations to compute odorant identity with the sparse activities of individual neurons representing Lagrange coefficients. More generally, we propose that sparse neuronal firing rates may represent Lagrange multipliers, which we call the dual brain hypothesis. We show such a formulation is well suited to solve problems with multiple interacting relative constraints.
doi_str_mv 10.1162/neco_a_01175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2193166765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193166765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-b98c44737bfa52add837b62730e177714e1a0f0cb1fb1bd8f50b9df268d268593</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS0EotvCjTOKxIVDAzNO_CWhCtTyUamiHEDiZjmOU1yy9mIni5a_Hi8tZYvgYNmSf_PmzTxCHiE8Q-T0eXA2aqMBUbA7ZIGsgVpK-fkuWYBUqhaciz2yn_MlAHAEdp_sNSB4K9pmQV6clPKQpzTbyYeL6ryPyYSpOu1dmPy0qdbeVB-SXxq7qXyoTmYzVu_d9D2mr_kBuTeYMbuH1_cB-fTm9cfjd_XZ-dvT41dntWVAp7pT0rataEQ3GEZN38vy5FQ04FAIga1DAwPYDocOu14ODDrVD5TLvhymmgNydKW7mrul622xlsyoV1tbaaOj8fr2T_Bf9EVca9G2iqMsAk-vBVL8Nrs86aXP1o2jCS7OWVNUDZY9cVbQJ3-hl3FOoYynKQVatst-UYdXlE0x5-SGGzMIehuL3o2l4I93B7iBf-fwx-DS7zT8j9bLf6BbZN2gb4smZULp4hVLtQalf_jVbYmfmtqrkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202530565</pqid></control><display><type>article</type><title>Deconstructing Odorant Identity via Primacy in Dual Networks</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Kepple, Daniel R. ; Giaffar, Hamza ; Rinberg, Dmitry ; Koulakov, Alexei A.</creator><creatorcontrib>Kepple, Daniel R. ; Giaffar, Hamza ; Rinberg, Dmitry ; Koulakov, Alexei A.</creatorcontrib><description>In the olfactory system, odor percepts retain their identity despite substantial variations in concentration, timing, and background. We study a novel strategy for encoding intensity-invariant stimulus identity that is based on representing relative rather than absolute values of stimulus features. For example, in what is known as the primacy coding model, odorant identities are represented by the conditions that some odorant receptors are activated more strongly than others. Because, in this scheme, odorant identity depends only on the relative amplitudes of olfactory receptor responses, identity is invariant to changes in both intensity and monotonic nonlinear transformations of its neuronal responses. Here we show that sparse vectors representing odorant mixtures can be recovered in a compressed sensing framework via elastic net loss minimization. In the primacy model, this minimization is performed under the constraint that some receptors respond to a given odorant more strongly than others. Using duality transformation, we show that this constrained optimization problem can be solved by a neural network whose Lyapunov function represents the dual Lagrangian and whose neural responses represent the Lagrange coefficients of primacy and other constraints. The connectivity in such a dual network resembles known features of connectivity in olfactory circuits. We thus propose that networks in the piriform cortex implement dual computations to compute odorant identity with the sparse activities of individual neurons representing Lagrange coefficients. More generally, we propose that sparse neuronal firing rates may represent Lagrange multipliers, which we call the dual brain hypothesis. We show such a formulation is well suited to solve problems with multiple interacting relative constraints.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01175</identifier><identifier>PMID: 30764743</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Action Potentials ; Algorithms ; Animals ; Brain ; Humans ; Invariants ; Lagrange multiplier ; Liapunov functions ; Mathematical models ; Models, Neurological ; Neural networks ; Odorants ; Olfactory Pathways - physiology ; Olfactory Perception - physiology ; Olfactory Receptor Neurons - physiology ; Optimization ; Receptors ; Receptors, Odorant - metabolism ; Smell ; Smell - physiology ; Transformations</subject><ispartof>Neural computation, 2019-04, Vol.31 (4), p.710-737</ispartof><rights>Copyright MIT Press Journals, The Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-b98c44737bfa52add837b62730e177714e1a0f0cb1fb1bd8f50b9df268d268593</citedby><cites>FETCH-LOGICAL-c502t-b98c44737bfa52add837b62730e177714e1a0f0cb1fb1bd8f50b9df268d268593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco_a_01175$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30764743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kepple, Daniel R.</creatorcontrib><creatorcontrib>Giaffar, Hamza</creatorcontrib><creatorcontrib>Rinberg, Dmitry</creatorcontrib><creatorcontrib>Koulakov, Alexei A.</creatorcontrib><title>Deconstructing Odorant Identity via Primacy in Dual Networks</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>In the olfactory system, odor percepts retain their identity despite substantial variations in concentration, timing, and background. We study a novel strategy for encoding intensity-invariant stimulus identity that is based on representing relative rather than absolute values of stimulus features. For example, in what is known as the primacy coding model, odorant identities are represented by the conditions that some odorant receptors are activated more strongly than others. Because, in this scheme, odorant identity depends only on the relative amplitudes of olfactory receptor responses, identity is invariant to changes in both intensity and monotonic nonlinear transformations of its neuronal responses. Here we show that sparse vectors representing odorant mixtures can be recovered in a compressed sensing framework via elastic net loss minimization. In the primacy model, this minimization is performed under the constraint that some receptors respond to a given odorant more strongly than others. Using duality transformation, we show that this constrained optimization problem can be solved by a neural network whose Lyapunov function represents the dual Lagrangian and whose neural responses represent the Lagrange coefficients of primacy and other constraints. The connectivity in such a dual network resembles known features of connectivity in olfactory circuits. We thus propose that networks in the piriform cortex implement dual computations to compute odorant identity with the sparse activities of individual neurons representing Lagrange coefficients. More generally, we propose that sparse neuronal firing rates may represent Lagrange multipliers, which we call the dual brain hypothesis. We show such a formulation is well suited to solve problems with multiple interacting relative constraints.</description><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Brain</subject><subject>Humans</subject><subject>Invariants</subject><subject>Lagrange multiplier</subject><subject>Liapunov functions</subject><subject>Mathematical models</subject><subject>Models, Neurological</subject><subject>Neural networks</subject><subject>Odorants</subject><subject>Olfactory Pathways - physiology</subject><subject>Olfactory Perception - physiology</subject><subject>Olfactory Receptor Neurons - physiology</subject><subject>Optimization</subject><subject>Receptors</subject><subject>Receptors, Odorant - metabolism</subject><subject>Smell</subject><subject>Smell - physiology</subject><subject>Transformations</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1v1DAQxS0EotvCjTOKxIVDAzNO_CWhCtTyUamiHEDiZjmOU1yy9mIni5a_Hi8tZYvgYNmSf_PmzTxCHiE8Q-T0eXA2aqMBUbA7ZIGsgVpK-fkuWYBUqhaciz2yn_MlAHAEdp_sNSB4K9pmQV6clPKQpzTbyYeL6ryPyYSpOu1dmPy0qdbeVB-SXxq7qXyoTmYzVu_d9D2mr_kBuTeYMbuH1_cB-fTm9cfjd_XZ-dvT41dntWVAp7pT0rataEQ3GEZN38vy5FQ04FAIga1DAwPYDocOu14ODDrVD5TLvhymmgNydKW7mrul622xlsyoV1tbaaOj8fr2T_Bf9EVca9G2iqMsAk-vBVL8Nrs86aXP1o2jCS7OWVNUDZY9cVbQJ3-hl3FOoYynKQVatst-UYdXlE0x5-SGGzMIehuL3o2l4I93B7iBf-fwx-DS7zT8j9bLf6BbZN2gb4smZULp4hVLtQalf_jVbYmfmtqrkg</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Kepple, Daniel R.</creator><creator>Giaffar, Hamza</creator><creator>Rinberg, Dmitry</creator><creator>Koulakov, Alexei A.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190401</creationdate><title>Deconstructing Odorant Identity via Primacy in Dual Networks</title><author>Kepple, Daniel R. ; Giaffar, Hamza ; Rinberg, Dmitry ; Koulakov, Alexei A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-b98c44737bfa52add837b62730e177714e1a0f0cb1fb1bd8f50b9df268d268593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Brain</topic><topic>Humans</topic><topic>Invariants</topic><topic>Lagrange multiplier</topic><topic>Liapunov functions</topic><topic>Mathematical models</topic><topic>Models, Neurological</topic><topic>Neural networks</topic><topic>Odorants</topic><topic>Olfactory Pathways - physiology</topic><topic>Olfactory Perception - physiology</topic><topic>Olfactory Receptor Neurons - physiology</topic><topic>Optimization</topic><topic>Receptors</topic><topic>Receptors, Odorant - metabolism</topic><topic>Smell</topic><topic>Smell - physiology</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kepple, Daniel R.</creatorcontrib><creatorcontrib>Giaffar, Hamza</creatorcontrib><creatorcontrib>Rinberg, Dmitry</creatorcontrib><creatorcontrib>Koulakov, Alexei A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kepple, Daniel R.</au><au>Giaffar, Hamza</au><au>Rinberg, Dmitry</au><au>Koulakov, Alexei A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconstructing Odorant Identity via Primacy in Dual Networks</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>31</volume><issue>4</issue><spage>710</spage><epage>737</epage><pages>710-737</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>In the olfactory system, odor percepts retain their identity despite substantial variations in concentration, timing, and background. We study a novel strategy for encoding intensity-invariant stimulus identity that is based on representing relative rather than absolute values of stimulus features. For example, in what is known as the primacy coding model, odorant identities are represented by the conditions that some odorant receptors are activated more strongly than others. Because, in this scheme, odorant identity depends only on the relative amplitudes of olfactory receptor responses, identity is invariant to changes in both intensity and monotonic nonlinear transformations of its neuronal responses. Here we show that sparse vectors representing odorant mixtures can be recovered in a compressed sensing framework via elastic net loss minimization. In the primacy model, this minimization is performed under the constraint that some receptors respond to a given odorant more strongly than others. Using duality transformation, we show that this constrained optimization problem can be solved by a neural network whose Lyapunov function represents the dual Lagrangian and whose neural responses represent the Lagrange coefficients of primacy and other constraints. The connectivity in such a dual network resembles known features of connectivity in olfactory circuits. We thus propose that networks in the piriform cortex implement dual computations to compute odorant identity with the sparse activities of individual neurons representing Lagrange coefficients. More generally, we propose that sparse neuronal firing rates may represent Lagrange multipliers, which we call the dual brain hypothesis. We show such a formulation is well suited to solve problems with multiple interacting relative constraints.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>30764743</pmid><doi>10.1162/neco_a_01175</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2019-04, Vol.31 (4), p.710-737
issn 0899-7667
1530-888X
language eng
recordid cdi_proquest_miscellaneous_2193166765
source MEDLINE; MIT Press Journals
subjects Action Potentials
Algorithms
Animals
Brain
Humans
Invariants
Lagrange multiplier
Liapunov functions
Mathematical models
Models, Neurological
Neural networks
Odorants
Olfactory Pathways - physiology
Olfactory Perception - physiology
Olfactory Receptor Neurons - physiology
Optimization
Receptors
Receptors, Odorant - metabolism
Smell
Smell - physiology
Transformations
title Deconstructing Odorant Identity via Primacy in Dual Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconstructing%20Odorant%20Identity%20via%20Primacy%20in%20Dual%20Networks&rft.jtitle=Neural%20computation&rft.au=Kepple,%20Daniel%20R.&rft.date=2019-04-01&rft.volume=31&rft.issue=4&rft.spage=710&rft.epage=737&rft.pages=710-737&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01175&rft_dat=%3Cproquest_cross%3E2193166765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202530565&rft_id=info:pmid/30764743&rfr_iscdi=true