Deconstructing Odorant Identity via Primacy in Dual Networks
In the olfactory system, odor percepts retain their identity despite substantial variations in concentration, timing, and background. We study a novel strategy for encoding intensity-invariant stimulus identity that is based on representing relative rather than absolute values of stimulus features....
Gespeichert in:
Veröffentlicht in: | Neural computation 2019-04, Vol.31 (4), p.710-737 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 737 |
---|---|
container_issue | 4 |
container_start_page | 710 |
container_title | Neural computation |
container_volume | 31 |
creator | Kepple, Daniel R. Giaffar, Hamza Rinberg, Dmitry Koulakov, Alexei A. |
description | In the olfactory system, odor percepts retain their identity despite substantial
variations in concentration, timing, and background. We study a novel strategy
for encoding intensity-invariant stimulus identity that is based on representing
relative rather than absolute values of stimulus features. For example, in what
is known as the primacy coding model, odorant identities are represented by the
conditions that some odorant receptors are activated more strongly than others.
Because, in this scheme, odorant identity depends only on the relative
amplitudes of olfactory receptor responses, identity is invariant to changes in
both intensity and monotonic nonlinear transformations of its neuronal
responses. Here we show that sparse vectors representing odorant mixtures can be
recovered in a compressed sensing framework via elastic net loss minimization.
In the primacy model, this minimization is performed under the constraint that
some receptors respond to a given odorant more strongly than others. Using
duality transformation, we show that this constrained optimization problem can
be solved by a neural network whose Lyapunov function represents the dual
Lagrangian and whose neural responses represent the Lagrange coefficients of
primacy and other constraints. The connectivity in such a dual network resembles
known features of connectivity in olfactory circuits. We thus propose that
networks in the piriform cortex implement dual computations to compute odorant
identity with the sparse activities of individual neurons representing Lagrange
coefficients. More generally, we propose that sparse neuronal firing rates may
represent Lagrange multipliers, which we call the dual brain hypothesis. We show
such a formulation is well suited to solve problems with multiple interacting
relative constraints. |
doi_str_mv | 10.1162/neco_a_01175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2193166765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193166765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-b98c44737bfa52add837b62730e177714e1a0f0cb1fb1bd8f50b9df268d268593</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS0EotvCjTOKxIVDAzNO_CWhCtTyUamiHEDiZjmOU1yy9mIni5a_Hi8tZYvgYNmSf_PmzTxCHiE8Q-T0eXA2aqMBUbA7ZIGsgVpK-fkuWYBUqhaciz2yn_MlAHAEdp_sNSB4K9pmQV6clPKQpzTbyYeL6ryPyYSpOu1dmPy0qdbeVB-SXxq7qXyoTmYzVu_d9D2mr_kBuTeYMbuH1_cB-fTm9cfjd_XZ-dvT41dntWVAp7pT0rataEQ3GEZN38vy5FQ04FAIga1DAwPYDocOu14ODDrVD5TLvhymmgNydKW7mrul622xlsyoV1tbaaOj8fr2T_Bf9EVca9G2iqMsAk-vBVL8Nrs86aXP1o2jCS7OWVNUDZY9cVbQJ3-hl3FOoYynKQVatst-UYdXlE0x5-SGGzMIehuL3o2l4I93B7iBf-fwx-DS7zT8j9bLf6BbZN2gb4smZULp4hVLtQalf_jVbYmfmtqrkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202530565</pqid></control><display><type>article</type><title>Deconstructing Odorant Identity via Primacy in Dual Networks</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Kepple, Daniel R. ; Giaffar, Hamza ; Rinberg, Dmitry ; Koulakov, Alexei A.</creator><creatorcontrib>Kepple, Daniel R. ; Giaffar, Hamza ; Rinberg, Dmitry ; Koulakov, Alexei A.</creatorcontrib><description>In the olfactory system, odor percepts retain their identity despite substantial
variations in concentration, timing, and background. We study a novel strategy
for encoding intensity-invariant stimulus identity that is based on representing
relative rather than absolute values of stimulus features. For example, in what
is known as the primacy coding model, odorant identities are represented by the
conditions that some odorant receptors are activated more strongly than others.
Because, in this scheme, odorant identity depends only on the relative
amplitudes of olfactory receptor responses, identity is invariant to changes in
both intensity and monotonic nonlinear transformations of its neuronal
responses. Here we show that sparse vectors representing odorant mixtures can be
recovered in a compressed sensing framework via elastic net loss minimization.
In the primacy model, this minimization is performed under the constraint that
some receptors respond to a given odorant more strongly than others. Using
duality transformation, we show that this constrained optimization problem can
be solved by a neural network whose Lyapunov function represents the dual
Lagrangian and whose neural responses represent the Lagrange coefficients of
primacy and other constraints. The connectivity in such a dual network resembles
known features of connectivity in olfactory circuits. We thus propose that
networks in the piriform cortex implement dual computations to compute odorant
identity with the sparse activities of individual neurons representing Lagrange
coefficients. More generally, we propose that sparse neuronal firing rates may
represent Lagrange multipliers, which we call the dual brain hypothesis. We show
such a formulation is well suited to solve problems with multiple interacting
relative constraints.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01175</identifier><identifier>PMID: 30764743</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Action Potentials ; Algorithms ; Animals ; Brain ; Humans ; Invariants ; Lagrange multiplier ; Liapunov functions ; Mathematical models ; Models, Neurological ; Neural networks ; Odorants ; Olfactory Pathways - physiology ; Olfactory Perception - physiology ; Olfactory Receptor Neurons - physiology ; Optimization ; Receptors ; Receptors, Odorant - metabolism ; Smell ; Smell - physiology ; Transformations</subject><ispartof>Neural computation, 2019-04, Vol.31 (4), p.710-737</ispartof><rights>Copyright MIT Press Journals, The Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-b98c44737bfa52add837b62730e177714e1a0f0cb1fb1bd8f50b9df268d268593</citedby><cites>FETCH-LOGICAL-c502t-b98c44737bfa52add837b62730e177714e1a0f0cb1fb1bd8f50b9df268d268593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco_a_01175$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30764743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kepple, Daniel R.</creatorcontrib><creatorcontrib>Giaffar, Hamza</creatorcontrib><creatorcontrib>Rinberg, Dmitry</creatorcontrib><creatorcontrib>Koulakov, Alexei A.</creatorcontrib><title>Deconstructing Odorant Identity via Primacy in Dual Networks</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>In the olfactory system, odor percepts retain their identity despite substantial
variations in concentration, timing, and background. We study a novel strategy
for encoding intensity-invariant stimulus identity that is based on representing
relative rather than absolute values of stimulus features. For example, in what
is known as the primacy coding model, odorant identities are represented by the
conditions that some odorant receptors are activated more strongly than others.
Because, in this scheme, odorant identity depends only on the relative
amplitudes of olfactory receptor responses, identity is invariant to changes in
both intensity and monotonic nonlinear transformations of its neuronal
responses. Here we show that sparse vectors representing odorant mixtures can be
recovered in a compressed sensing framework via elastic net loss minimization.
In the primacy model, this minimization is performed under the constraint that
some receptors respond to a given odorant more strongly than others. Using
duality transformation, we show that this constrained optimization problem can
be solved by a neural network whose Lyapunov function represents the dual
Lagrangian and whose neural responses represent the Lagrange coefficients of
primacy and other constraints. The connectivity in such a dual network resembles
known features of connectivity in olfactory circuits. We thus propose that
networks in the piriform cortex implement dual computations to compute odorant
identity with the sparse activities of individual neurons representing Lagrange
coefficients. More generally, we propose that sparse neuronal firing rates may
represent Lagrange multipliers, which we call the dual brain hypothesis. We show
such a formulation is well suited to solve problems with multiple interacting
relative constraints.</description><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Brain</subject><subject>Humans</subject><subject>Invariants</subject><subject>Lagrange multiplier</subject><subject>Liapunov functions</subject><subject>Mathematical models</subject><subject>Models, Neurological</subject><subject>Neural networks</subject><subject>Odorants</subject><subject>Olfactory Pathways - physiology</subject><subject>Olfactory Perception - physiology</subject><subject>Olfactory Receptor Neurons - physiology</subject><subject>Optimization</subject><subject>Receptors</subject><subject>Receptors, Odorant - metabolism</subject><subject>Smell</subject><subject>Smell - physiology</subject><subject>Transformations</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1v1DAQxS0EotvCjTOKxIVDAzNO_CWhCtTyUamiHEDiZjmOU1yy9mIni5a_Hi8tZYvgYNmSf_PmzTxCHiE8Q-T0eXA2aqMBUbA7ZIGsgVpK-fkuWYBUqhaciz2yn_MlAHAEdp_sNSB4K9pmQV6clPKQpzTbyYeL6ryPyYSpOu1dmPy0qdbeVB-SXxq7qXyoTmYzVu_d9D2mr_kBuTeYMbuH1_cB-fTm9cfjd_XZ-dvT41dntWVAp7pT0rataEQ3GEZN38vy5FQ04FAIga1DAwPYDocOu14ODDrVD5TLvhymmgNydKW7mrul622xlsyoV1tbaaOj8fr2T_Bf9EVca9G2iqMsAk-vBVL8Nrs86aXP1o2jCS7OWVNUDZY9cVbQJ3-hl3FOoYynKQVatst-UYdXlE0x5-SGGzMIehuL3o2l4I93B7iBf-fwx-DS7zT8j9bLf6BbZN2gb4smZULp4hVLtQalf_jVbYmfmtqrkg</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Kepple, Daniel R.</creator><creator>Giaffar, Hamza</creator><creator>Rinberg, Dmitry</creator><creator>Koulakov, Alexei A.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190401</creationdate><title>Deconstructing Odorant Identity via Primacy in Dual Networks</title><author>Kepple, Daniel R. ; Giaffar, Hamza ; Rinberg, Dmitry ; Koulakov, Alexei A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-b98c44737bfa52add837b62730e177714e1a0f0cb1fb1bd8f50b9df268d268593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Brain</topic><topic>Humans</topic><topic>Invariants</topic><topic>Lagrange multiplier</topic><topic>Liapunov functions</topic><topic>Mathematical models</topic><topic>Models, Neurological</topic><topic>Neural networks</topic><topic>Odorants</topic><topic>Olfactory Pathways - physiology</topic><topic>Olfactory Perception - physiology</topic><topic>Olfactory Receptor Neurons - physiology</topic><topic>Optimization</topic><topic>Receptors</topic><topic>Receptors, Odorant - metabolism</topic><topic>Smell</topic><topic>Smell - physiology</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kepple, Daniel R.</creatorcontrib><creatorcontrib>Giaffar, Hamza</creatorcontrib><creatorcontrib>Rinberg, Dmitry</creatorcontrib><creatorcontrib>Koulakov, Alexei A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kepple, Daniel R.</au><au>Giaffar, Hamza</au><au>Rinberg, Dmitry</au><au>Koulakov, Alexei A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconstructing Odorant Identity via Primacy in Dual Networks</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>31</volume><issue>4</issue><spage>710</spage><epage>737</epage><pages>710-737</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>In the olfactory system, odor percepts retain their identity despite substantial
variations in concentration, timing, and background. We study a novel strategy
for encoding intensity-invariant stimulus identity that is based on representing
relative rather than absolute values of stimulus features. For example, in what
is known as the primacy coding model, odorant identities are represented by the
conditions that some odorant receptors are activated more strongly than others.
Because, in this scheme, odorant identity depends only on the relative
amplitudes of olfactory receptor responses, identity is invariant to changes in
both intensity and monotonic nonlinear transformations of its neuronal
responses. Here we show that sparse vectors representing odorant mixtures can be
recovered in a compressed sensing framework via elastic net loss minimization.
In the primacy model, this minimization is performed under the constraint that
some receptors respond to a given odorant more strongly than others. Using
duality transformation, we show that this constrained optimization problem can
be solved by a neural network whose Lyapunov function represents the dual
Lagrangian and whose neural responses represent the Lagrange coefficients of
primacy and other constraints. The connectivity in such a dual network resembles
known features of connectivity in olfactory circuits. We thus propose that
networks in the piriform cortex implement dual computations to compute odorant
identity with the sparse activities of individual neurons representing Lagrange
coefficients. More generally, we propose that sparse neuronal firing rates may
represent Lagrange multipliers, which we call the dual brain hypothesis. We show
such a formulation is well suited to solve problems with multiple interacting
relative constraints.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>30764743</pmid><doi>10.1162/neco_a_01175</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2019-04, Vol.31 (4), p.710-737 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_proquest_miscellaneous_2193166765 |
source | MEDLINE; MIT Press Journals |
subjects | Action Potentials Algorithms Animals Brain Humans Invariants Lagrange multiplier Liapunov functions Mathematical models Models, Neurological Neural networks Odorants Olfactory Pathways - physiology Olfactory Perception - physiology Olfactory Receptor Neurons - physiology Optimization Receptors Receptors, Odorant - metabolism Smell Smell - physiology Transformations |
title | Deconstructing Odorant Identity via Primacy in Dual Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconstructing%20Odorant%20Identity%20via%20Primacy%20in%20Dual%20Networks&rft.jtitle=Neural%20computation&rft.au=Kepple,%20Daniel%20R.&rft.date=2019-04-01&rft.volume=31&rft.issue=4&rft.spage=710&rft.epage=737&rft.pages=710-737&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01175&rft_dat=%3Cproquest_cross%3E2193166765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202530565&rft_id=info:pmid/30764743&rfr_iscdi=true |