Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling

Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2019-04, Vol.26 (4), p.258-266
Hauptverfasser: Yan, Lijuan, Wu, Hao, Li, Xuemei, Gao, Ning, Chen, Zhucheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 4
container_start_page 258
container_title Nature structural & molecular biology
container_volume 26
creator Yan, Lijuan
Wu, Hao
Li, Xuemei
Gao, Ning
Chen, Zhucheng
description Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF x -bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed.
doi_str_mv 10.1038/s41594-019-0199-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2193165528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382308</galeid><sourcerecordid>A593382308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-6ca768646c49d851bb828b538eb8330d23c9469ef1bb898e74b92982549fc5563</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEoqXwAFxQJC5wSPFHJvEcq4qPlSohsSCOxnEmu6nieLGTqtx4B96QJ8HRllaLAFkjWzO__9ge_bPsKWennEn1KpYcsCwYxyWwwHvZMYcSCkQF92_PKI-yRzFeMiYAavkwO5JM1UJxOM6-rKcw22kOFHPf5dOW8tX68-rn9x_jbAfy0TvKrXe7ga7zQFdkhtykxBgpXFGbO7JbM_bRLWq7Dd6ZqR8T6XxLQz9uHmcPOjNEenKzn2Sf3rz-eP6uuHj_dnV-dlFYqOqpqKypK1WVlS2xVcCbRgnVgFTUKClZK6TFskLqlgoqqssGBSoBJXYWoJIn2Yt9313wX2eKk3Z9tDQMZiQ_Ry04Sl4BCJXQ53-gl34OY3qdTv2gRlAA_6UEE3Utyqq-ozZmIN2PnZ-CscvV-gxQSiXSrBN1-hcqrZZcn4ZJXZ_yB4KXB4LETHQ9bcwco16tPxyyfM_a4GMM1Old6J0J3zRnevGJ3vtEJ48sgRqT5tnN5-bGUXur-G2MBIg9EFNp3FC4-_2_u_4CCuTFQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202772467</pqid></control><display><type>article</type><title>Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Yan, Lijuan ; Wu, Hao ; Li, Xuemei ; Gao, Ning ; Chen, Zhucheng</creator><creatorcontrib>Yan, Lijuan ; Wu, Hao ; Li, Xuemei ; Gao, Ning ; Chen, Zhucheng</creatorcontrib><description>Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF x -bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-019-0199-9</identifier><identifier>PMID: 30872815</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/100/102 ; 631/535/1258/1259 ; Adenosine ; Adenosine diphosphate ; Adenosine Diphosphate - metabolism ; Adenosine Triphosphatases - metabolism ; Adenosine Triphosphatases - ultrastructure ; ATPases ; Baking yeast ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Catalysis ; Chromatin ; Chromatin Assembly and Disassembly - genetics ; Chromatin Assembly and Disassembly - physiology ; Chromatin remodeling ; Crosslinking ; Cryoelectron Microscopy - methods ; Deformation mechanisms ; Deoxyribonucleic acid ; Distortion ; DNA ; DNA structure ; DNA-Binding Proteins - metabolism ; DNA-Binding Proteins - ultrastructure ; Domains ; Electron microscopy ; Enzymes ; Fluorides ; Histones ; Histones - metabolism ; Homology ; Humans ; Life Sciences ; Membrane Biology ; Microscopy ; Nucleosomes - metabolism ; Nucleosomes - ultrastructure ; Polymer crosslinking ; Protein Structure ; Proteins ; RecA protein ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - ultrastructure ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - ultrastructure ; Transcription Factors - metabolism ; Translocation ; Yeasts</subject><ispartof>Nature structural &amp; molecular biology, 2019-04, Vol.26 (4), p.258-266</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-6ca768646c49d851bb828b538eb8330d23c9469ef1bb898e74b92982549fc5563</citedby><cites>FETCH-LOGICAL-c567t-6ca768646c49d851bb828b538eb8330d23c9469ef1bb898e74b92982549fc5563</cites><orcidid>0000-0002-8684-0339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-019-0199-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-019-0199-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30872815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Lijuan</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Li, Xuemei</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Chen, Zhucheng</creatorcontrib><title>Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF x -bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed.</description><subject>631/337/100/102</subject><subject>631/535/1258/1259</subject><subject>Adenosine</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphatases - ultrastructure</subject><subject>ATPases</subject><subject>Baking yeast</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Catalysis</subject><subject>Chromatin</subject><subject>Chromatin Assembly and Disassembly - genetics</subject><subject>Chromatin Assembly and Disassembly - physiology</subject><subject>Chromatin remodeling</subject><subject>Crosslinking</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Deformation mechanisms</subject><subject>Deoxyribonucleic acid</subject><subject>Distortion</subject><subject>DNA</subject><subject>DNA structure</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Binding Proteins - ultrastructure</subject><subject>Domains</subject><subject>Electron microscopy</subject><subject>Enzymes</subject><subject>Fluorides</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Homology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Microscopy</subject><subject>Nucleosomes - metabolism</subject><subject>Nucleosomes - ultrastructure</subject><subject>Polymer crosslinking</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>RecA protein</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - ultrastructure</subject><subject>Transcription Factors - metabolism</subject><subject>Translocation</subject><subject>Yeasts</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9ks1u1DAQxyMEoqXwAFxQJC5wSPFHJvEcq4qPlSohsSCOxnEmu6nieLGTqtx4B96QJ8HRllaLAFkjWzO__9ge_bPsKWennEn1KpYcsCwYxyWwwHvZMYcSCkQF92_PKI-yRzFeMiYAavkwO5JM1UJxOM6-rKcw22kOFHPf5dOW8tX68-rn9x_jbAfy0TvKrXe7ga7zQFdkhtykxBgpXFGbO7JbM_bRLWq7Dd6ZqR8T6XxLQz9uHmcPOjNEenKzn2Sf3rz-eP6uuHj_dnV-dlFYqOqpqKypK1WVlS2xVcCbRgnVgFTUKClZK6TFskLqlgoqqssGBSoBJXYWoJIn2Yt9313wX2eKk3Z9tDQMZiQ_Ry04Sl4BCJXQ53-gl34OY3qdTv2gRlAA_6UEE3Utyqq-ozZmIN2PnZ-CscvV-gxQSiXSrBN1-hcqrZZcn4ZJXZ_yB4KXB4LETHQ9bcwco16tPxyyfM_a4GMM1Old6J0J3zRnevGJ3vtEJ48sgRqT5tnN5-bGUXur-G2MBIg9EFNp3FC4-_2_u_4CCuTFQQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Yan, Lijuan</creator><creator>Wu, Hao</creator><creator>Li, Xuemei</creator><creator>Gao, Ning</creator><creator>Chen, Zhucheng</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8684-0339</orcidid></search><sort><creationdate>20190401</creationdate><title>Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling</title><author>Yan, Lijuan ; Wu, Hao ; Li, Xuemei ; Gao, Ning ; Chen, Zhucheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-6ca768646c49d851bb828b538eb8330d23c9469ef1bb898e74b92982549fc5563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/337/100/102</topic><topic>631/535/1258/1259</topic><topic>Adenosine</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphatases - ultrastructure</topic><topic>ATPases</topic><topic>Baking yeast</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Catalysis</topic><topic>Chromatin</topic><topic>Chromatin Assembly and Disassembly - genetics</topic><topic>Chromatin Assembly and Disassembly - physiology</topic><topic>Chromatin remodeling</topic><topic>Crosslinking</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Deformation mechanisms</topic><topic>Deoxyribonucleic acid</topic><topic>Distortion</topic><topic>DNA</topic><topic>DNA structure</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Binding Proteins - ultrastructure</topic><topic>Domains</topic><topic>Electron microscopy</topic><topic>Enzymes</topic><topic>Fluorides</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Homology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Microscopy</topic><topic>Nucleosomes - metabolism</topic><topic>Nucleosomes - ultrastructure</topic><topic>Polymer crosslinking</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>RecA protein</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - ultrastructure</topic><topic>Transcription Factors - metabolism</topic><topic>Translocation</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Lijuan</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Li, Xuemei</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Chen, Zhucheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Lijuan</au><au>Wu, Hao</au><au>Li, Xuemei</au><au>Gao, Ning</au><au>Chen, Zhucheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>26</volume><issue>4</issue><spage>258</spage><epage>266</epage><pages>258-266</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF x -bound states. The data show that after nucleosome binding, ISW1 is activated by substantial rearrangement of the catalytic domains, with the regulatory AutoN domain packing the first RecA-like core and the NegC domain being disordered. The high-resolution structure reveals local DNA distortion and translocation induced by ISW1 in the ADP-bound state, which is essentially identical to that induced by the Snf2 chromatin remodeler, suggesting a common mechanism of DNA translocation. The histone core remains largely unperturbed, and prevention of histone distortion by crosslinking did not inhibit the activity of yeast ISW1 or its human homolog. Together, our findings suggest a general mechanism of chromatin remodeling involving local DNA distortion without notable histone deformation. Cryo-EM structures of the chromatin remodeler ISWI in complex with the nucleosome show local DNA distortion nearly identical to that induced by Snf2, while the histone core remains largely unperturbed.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30872815</pmid><doi>10.1038/s41594-019-0199-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8684-0339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2019-04, Vol.26 (4), p.258-266
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_2193165528
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/337/100/102
631/535/1258/1259
Adenosine
Adenosine diphosphate
Adenosine Diphosphate - metabolism
Adenosine Triphosphatases - metabolism
Adenosine Triphosphatases - ultrastructure
ATPases
Baking yeast
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Catalysis
Chromatin
Chromatin Assembly and Disassembly - genetics
Chromatin Assembly and Disassembly - physiology
Chromatin remodeling
Crosslinking
Cryoelectron Microscopy - methods
Deformation mechanisms
Deoxyribonucleic acid
Distortion
DNA
DNA structure
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - ultrastructure
Domains
Electron microscopy
Enzymes
Fluorides
Histones
Histones - metabolism
Homology
Humans
Life Sciences
Membrane Biology
Microscopy
Nucleosomes - metabolism
Nucleosomes - ultrastructure
Polymer crosslinking
Protein Structure
Proteins
RecA protein
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - ultrastructure
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - ultrastructure
Transcription Factors - metabolism
Translocation
Yeasts
title Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20the%20ISWI%E2%80%93nucleosome%20complex%20reveal%20a%20conserved%20mechanism%20of%20chromatin%20remodeling&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Yan,%20Lijuan&rft.date=2019-04-01&rft.volume=26&rft.issue=4&rft.spage=258&rft.epage=266&rft.pages=258-266&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-019-0199-9&rft_dat=%3Cgale_proqu%3EA593382308%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202772467&rft_id=info:pmid/30872815&rft_galeid=A593382308&rfr_iscdi=true