Deep learning for waveform identification of resting needle electromyography signals

•Resting EMG discharges were classified by Mel-spectrogram conversion and deep-learning algorithms.•Data augmentation and use of pre-trained weights (transfer learning) increased the accuracy.•Waveform identification of clinical EMG testing might be possible by deep-learning algorithms. Given the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical neurophysiology 2019-05, Vol.130 (5), p.617-623
Hauptverfasser: Nodera, Hiroyuki, Osaki, Yusuke, Yamazaki, Hiroki, Mori, Atsuko, Izumi, Yuishin, Kaji, Ryuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!