Photo-induced charge density distribution in metal surfaces and its extraction with apertureless near-field optics

Electromagnetic (EM) waves impinging on finite metallic structures can induce non-uniform electrical currents and create oscillating charge densities. These local charges govern the important physical processes such as plasmonic behavior or enhanced Raman scattering. Yet the quantitative calculation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2019-06, Vol.31 (24), p.24LT01-24LT01
Hauptverfasser: Chui, S T, Chen, Xinzhong, Hu, Hai, Hu, Debo, Dai, Qing, Liu, Mengkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24LT01
container_issue 24
container_start_page 24LT01
container_title Journal of physics. Condensed matter
container_volume 31
creator Chui, S T
Chen, Xinzhong
Hu, Hai
Hu, Debo
Dai, Qing
Liu, Mengkun
description Electromagnetic (EM) waves impinging on finite metallic structures can induce non-uniform electrical currents and create oscillating charge densities. These local charges govern the important physical processes such as plasmonic behavior or enhanced Raman scattering. Yet the quantitative calculation and probing of the spatial distribution of the charge density still remain challenging at the subwavelength scale. This is especially the case if one considers the boundary effect, where the charge density can become divergent and conventional finite element methods fail to obtain accurate information. With an approach we recently developed, we calculate this charge density for subwavelength structures with and without sharp corners: gold disks and equilateral triangles. We also devise an independent way to extract the surface charge density distributions from experiments using scattering-type scanning near-field optical microscope (s-SNOM). We found that the charge density is related to the near field signal Sn by With no adjustable parameters, the extracted surface charge distribution from the experiments matches well with that from the theoretical prediction, both in magnitude and phase. Our work provides a quantitative study of the surface charge distributions and a systematic and rigorous treatment to extract surface charge distributions at the nanoscale, opening opportunities for mining the near-field data from s-SNOM.
doi_str_mv 10.1088/1361-648X/ab0fb3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2193162735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193162735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b8898919adc7ceec41a46d884d8c71d3ac986012f0516cf9766d6ddf9c28d0593</originalsourceid><addsrcrecordid>eNp1kEtr3DAQgEVoyW4e956Cbs2h7kqWV5aOJSRNYSE5bCA3IUujrhbbciSZNP8-3jjNqYWBgeGb14fQF0q-UyLEijJOC16Jx5VuiGvYEVp-lD6hJZFrVggpqgU6SWlPCKkEq47RghFRE0HlEsX7Xcih8L0dDVhsdjr-BmyhTz6_YOtTjr4Zsw899j3uIOsWpzE6bSBh3Vvsc8LwJ0dt3qBnn3dYDxDzGKGFlHAPOhbOQ2txGLI36Qx9drpNcP6eT9HDzfX26rbY3P38dfVjUxjGRS4aMV0uqdTW1AbAVFRX3ApRWWFqapk2UnBCS0fWlBsna84tt9ZJUwpL1pKdost57hDD0wgpq84nA22rewhjUiWVjPKyZusJJTNqYkgpglND9J2OL4oSdTCtDlrVQauaTU8tF-_Tx6YD-9HwV-0EfJ0BHwa1D2Psp2eV6RSjqqym2GwJVYN1E_ntH-R_N78Cm76YFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193162735</pqid></control><display><type>article</type><title>Photo-induced charge density distribution in metal surfaces and its extraction with apertureless near-field optics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chui, S T ; Chen, Xinzhong ; Hu, Hai ; Hu, Debo ; Dai, Qing ; Liu, Mengkun</creator><creatorcontrib>Chui, S T ; Chen, Xinzhong ; Hu, Hai ; Hu, Debo ; Dai, Qing ; Liu, Mengkun</creatorcontrib><description>Electromagnetic (EM) waves impinging on finite metallic structures can induce non-uniform electrical currents and create oscillating charge densities. These local charges govern the important physical processes such as plasmonic behavior or enhanced Raman scattering. Yet the quantitative calculation and probing of the spatial distribution of the charge density still remain challenging at the subwavelength scale. This is especially the case if one considers the boundary effect, where the charge density can become divergent and conventional finite element methods fail to obtain accurate information. With an approach we recently developed, we calculate this charge density for subwavelength structures with and without sharp corners: gold disks and equilateral triangles. We also devise an independent way to extract the surface charge density distributions from experiments using scattering-type scanning near-field optical microscope (s-SNOM). We found that the charge density is related to the near field signal Sn by With no adjustable parameters, the extracted surface charge distribution from the experiments matches well with that from the theoretical prediction, both in magnitude and phase. Our work provides a quantitative study of the surface charge distributions and a systematic and rigorous treatment to extract surface charge distributions at the nanoscale, opening opportunities for mining the near-field data from s-SNOM.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab0fb3</identifier><identifier>PMID: 30870819</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>charge density ; s-SNOM ; scattering</subject><ispartof>Journal of physics. Condensed matter, 2019-06, Vol.31 (24), p.24LT01-24LT01</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b8898919adc7ceec41a46d884d8c71d3ac986012f0516cf9766d6ddf9c28d0593</citedby><cites>FETCH-LOGICAL-c368t-b8898919adc7ceec41a46d884d8c71d3ac986012f0516cf9766d6ddf9c28d0593</cites><orcidid>0000-0001-6454-9690 ; 0000-0002-1750-0867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ab0fb3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30870819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chui, S T</creatorcontrib><creatorcontrib>Chen, Xinzhong</creatorcontrib><creatorcontrib>Hu, Hai</creatorcontrib><creatorcontrib>Hu, Debo</creatorcontrib><creatorcontrib>Dai, Qing</creatorcontrib><creatorcontrib>Liu, Mengkun</creatorcontrib><title>Photo-induced charge density distribution in metal surfaces and its extraction with apertureless near-field optics</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Electromagnetic (EM) waves impinging on finite metallic structures can induce non-uniform electrical currents and create oscillating charge densities. These local charges govern the important physical processes such as plasmonic behavior or enhanced Raman scattering. Yet the quantitative calculation and probing of the spatial distribution of the charge density still remain challenging at the subwavelength scale. This is especially the case if one considers the boundary effect, where the charge density can become divergent and conventional finite element methods fail to obtain accurate information. With an approach we recently developed, we calculate this charge density for subwavelength structures with and without sharp corners: gold disks and equilateral triangles. We also devise an independent way to extract the surface charge density distributions from experiments using scattering-type scanning near-field optical microscope (s-SNOM). We found that the charge density is related to the near field signal Sn by With no adjustable parameters, the extracted surface charge distribution from the experiments matches well with that from the theoretical prediction, both in magnitude and phase. Our work provides a quantitative study of the surface charge distributions and a systematic and rigorous treatment to extract surface charge distributions at the nanoscale, opening opportunities for mining the near-field data from s-SNOM.</description><subject>charge density</subject><subject>s-SNOM</subject><subject>scattering</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtr3DAQgEVoyW4e956Cbs2h7kqWV5aOJSRNYSE5bCA3IUujrhbbciSZNP8-3jjNqYWBgeGb14fQF0q-UyLEijJOC16Jx5VuiGvYEVp-lD6hJZFrVggpqgU6SWlPCKkEq47RghFRE0HlEsX7Xcih8L0dDVhsdjr-BmyhTz6_YOtTjr4Zsw899j3uIOsWpzE6bSBh3Vvsc8LwJ0dt3qBnn3dYDxDzGKGFlHAPOhbOQ2txGLI36Qx9drpNcP6eT9HDzfX26rbY3P38dfVjUxjGRS4aMV0uqdTW1AbAVFRX3ApRWWFqapk2UnBCS0fWlBsna84tt9ZJUwpL1pKdost57hDD0wgpq84nA22rewhjUiWVjPKyZusJJTNqYkgpglND9J2OL4oSdTCtDlrVQauaTU8tF-_Tx6YD-9HwV-0EfJ0BHwa1D2Psp2eV6RSjqqym2GwJVYN1E_ntH-R_N78Cm76YFQ</recordid><startdate>20190619</startdate><enddate>20190619</enddate><creator>Chui, S T</creator><creator>Chen, Xinzhong</creator><creator>Hu, Hai</creator><creator>Hu, Debo</creator><creator>Dai, Qing</creator><creator>Liu, Mengkun</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6454-9690</orcidid><orcidid>https://orcid.org/0000-0002-1750-0867</orcidid></search><sort><creationdate>20190619</creationdate><title>Photo-induced charge density distribution in metal surfaces and its extraction with apertureless near-field optics</title><author>Chui, S T ; Chen, Xinzhong ; Hu, Hai ; Hu, Debo ; Dai, Qing ; Liu, Mengkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b8898919adc7ceec41a46d884d8c71d3ac986012f0516cf9766d6ddf9c28d0593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>charge density</topic><topic>s-SNOM</topic><topic>scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chui, S T</creatorcontrib><creatorcontrib>Chen, Xinzhong</creatorcontrib><creatorcontrib>Hu, Hai</creatorcontrib><creatorcontrib>Hu, Debo</creatorcontrib><creatorcontrib>Dai, Qing</creatorcontrib><creatorcontrib>Liu, Mengkun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chui, S T</au><au>Chen, Xinzhong</au><au>Hu, Hai</au><au>Hu, Debo</au><au>Dai, Qing</au><au>Liu, Mengkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo-induced charge density distribution in metal surfaces and its extraction with apertureless near-field optics</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2019-06-19</date><risdate>2019</risdate><volume>31</volume><issue>24</issue><spage>24LT01</spage><epage>24LT01</epage><pages>24LT01-24LT01</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Electromagnetic (EM) waves impinging on finite metallic structures can induce non-uniform electrical currents and create oscillating charge densities. These local charges govern the important physical processes such as plasmonic behavior or enhanced Raman scattering. Yet the quantitative calculation and probing of the spatial distribution of the charge density still remain challenging at the subwavelength scale. This is especially the case if one considers the boundary effect, where the charge density can become divergent and conventional finite element methods fail to obtain accurate information. With an approach we recently developed, we calculate this charge density for subwavelength structures with and without sharp corners: gold disks and equilateral triangles. We also devise an independent way to extract the surface charge density distributions from experiments using scattering-type scanning near-field optical microscope (s-SNOM). We found that the charge density is related to the near field signal Sn by With no adjustable parameters, the extracted surface charge distribution from the experiments matches well with that from the theoretical prediction, both in magnitude and phase. Our work provides a quantitative study of the surface charge distributions and a systematic and rigorous treatment to extract surface charge distributions at the nanoscale, opening opportunities for mining the near-field data from s-SNOM.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30870819</pmid><doi>10.1088/1361-648X/ab0fb3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6454-9690</orcidid><orcidid>https://orcid.org/0000-0002-1750-0867</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2019-06, Vol.31 (24), p.24LT01-24LT01
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_2193162735
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects charge density
s-SNOM
scattering
title Photo-induced charge density distribution in metal surfaces and its extraction with apertureless near-field optics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo-induced%20charge%20density%20distribution%20in%20metal%20surfaces%20and%20its%20extraction%20with%20apertureless%20near-field%20optics&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Chui,%20S%20T&rft.date=2019-06-19&rft.volume=31&rft.issue=24&rft.spage=24LT01&rft.epage=24LT01&rft.pages=24LT01-24LT01&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab0fb3&rft_dat=%3Cproquest_cross%3E2193162735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193162735&rft_id=info:pmid/30870819&rfr_iscdi=true