Decreased wall shear stress at high-pressure areas predicts the rupture point in ruptured intracranial aneurysms
Degenerative cerebral aneurysm walls are associated with aneurysm rupture and subarachnoid hemorrhage. Thin-walled regions (TWRs) represent fragile areas that may eventually lead to aneurysm rupture. Previous computational fluid dynamics (CFD) studies reported the correlation of maximum pressure (Pm...
Gespeichert in:
Veröffentlicht in: | Journal of neurosurgery 2020-04, Vol.132 (4), p.1116-1122 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1122 |
---|---|
container_issue | 4 |
container_start_page | 1116 |
container_title | Journal of neurosurgery |
container_volume | 132 |
creator | Suzuki, Tomoaki Stapleton, Christopher J Koch, Matthew J Tanaka, Kazutoshi Fujimura, Soichiro Suzuki, Takashi Yanagisawa, Takeshi Yamamoto, Makoto Fujii, Yukihiko Murayama, Yuichi Patel, Aman B |
description | Degenerative cerebral aneurysm walls are associated with aneurysm rupture and subarachnoid hemorrhage. Thin-walled regions (TWRs) represent fragile areas that may eventually lead to aneurysm rupture. Previous computational fluid dynamics (CFD) studies reported the correlation of maximum pressure (Pmax) areas and TWRs; however, the correlation with aneurysm rupture has not been established. This study aims to investigate this hemodynamic correlation.
The aneurysmal wall surface at the Pmax areas was intraoperatively evaluated using a fluid flow formula under pulsatile blood flow conditions in 23 patients with 23 saccular middle cerebral artery (MCA) bifurcation aneurysms (16 unruptured and 7 ruptured). The pressure difference (Pd) at the Pmax areas was calculated by subtracting the average pressure (Pave) from the Pmax and normalized by dividing this by the dynamic pressure at the aneurysm inlet side. The wall shear stress (WSS) was also calculated at the Pmax areas, aneurysm dome, and parent artery. These hemodynamic parameters were used to validate the correlation with TWRs in unruptured MCA aneurysms. The characteristic hemodynamic parameters at the rupture points in ruptured MCA aneurysms were then determined.
In 13 of 16 unruptured aneurysms (81.2%), Pmax areas were identified that corresponded to TWRs. In 5 of the 7 ruptured cerebral aneurysms, the Pmax areas coincided with the rupture point. At these areas, the Pd values were not higher than those of the TWRs in unruptured cerebral aneurysms; however, minimum WSS, time-averaged WSS, and normalized WSS at the rupture point were significantly lower than those of the TWRs in unruptured aneurysms (p < 0.01).
At the Pmax area of TWRs, decreased WSS appears to be the crucial hemodynamic parameter that indicates the risk of aneurysm rupture. |
doi_str_mv | 10.3171/2018.12.jns182897 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2193162302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193162302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-53e9ba2504e2b50d4bae758efae90324571e13c77e2a06971f5a591176f799e53</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwAWyQl2xSPHYcx0vEG1WwANaRk0xoqjQNHkeof0-itqzmdedq5jB2CWKuwMCNFJDOQc5XLUEqU2uO2BSsUpFIrDpmUyGkjJRI9YSdEa2EgCRO5CmbDD2jEyunrLvHwqMjLPmvaxpOS3SeU_BIxF3gy_p7GXVj1XvkbpTyoSzrIhAPS-S-78I46jZ1G3jdHhrlkAfvCu_a2jXctdj7La3pnJ1UriG82McZ-3p8-Lx7jhbvTy93t4uoUIkJkVZocye1iFHmWpRx7tDoFCuHVigZawMIqjAGpRu-NVBppy2ASSpjLWo1Y9c7385vfnqkkK1rKrBphks2PWVyAAWJVEIOUthJC78h8lhlna_Xzm8zENkIOhtBZyCz17ePHehh52pv3-drLP83DmTVH9h3eyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193162302</pqid></control><display><type>article</type><title>Decreased wall shear stress at high-pressure areas predicts the rupture point in ruptured intracranial aneurysms</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Suzuki, Tomoaki ; Stapleton, Christopher J ; Koch, Matthew J ; Tanaka, Kazutoshi ; Fujimura, Soichiro ; Suzuki, Takashi ; Yanagisawa, Takeshi ; Yamamoto, Makoto ; Fujii, Yukihiko ; Murayama, Yuichi ; Patel, Aman B</creator><creatorcontrib>Suzuki, Tomoaki ; Stapleton, Christopher J ; Koch, Matthew J ; Tanaka, Kazutoshi ; Fujimura, Soichiro ; Suzuki, Takashi ; Yanagisawa, Takeshi ; Yamamoto, Makoto ; Fujii, Yukihiko ; Murayama, Yuichi ; Patel, Aman B</creatorcontrib><description>Degenerative cerebral aneurysm walls are associated with aneurysm rupture and subarachnoid hemorrhage. Thin-walled regions (TWRs) represent fragile areas that may eventually lead to aneurysm rupture. Previous computational fluid dynamics (CFD) studies reported the correlation of maximum pressure (Pmax) areas and TWRs; however, the correlation with aneurysm rupture has not been established. This study aims to investigate this hemodynamic correlation.
The aneurysmal wall surface at the Pmax areas was intraoperatively evaluated using a fluid flow formula under pulsatile blood flow conditions in 23 patients with 23 saccular middle cerebral artery (MCA) bifurcation aneurysms (16 unruptured and 7 ruptured). The pressure difference (Pd) at the Pmax areas was calculated by subtracting the average pressure (Pave) from the Pmax and normalized by dividing this by the dynamic pressure at the aneurysm inlet side. The wall shear stress (WSS) was also calculated at the Pmax areas, aneurysm dome, and parent artery. These hemodynamic parameters were used to validate the correlation with TWRs in unruptured MCA aneurysms. The characteristic hemodynamic parameters at the rupture points in ruptured MCA aneurysms were then determined.
In 13 of 16 unruptured aneurysms (81.2%), Pmax areas were identified that corresponded to TWRs. In 5 of the 7 ruptured cerebral aneurysms, the Pmax areas coincided with the rupture point. At these areas, the Pd values were not higher than those of the TWRs in unruptured cerebral aneurysms; however, minimum WSS, time-averaged WSS, and normalized WSS at the rupture point were significantly lower than those of the TWRs in unruptured aneurysms (p < 0.01).
At the Pmax area of TWRs, decreased WSS appears to be the crucial hemodynamic parameter that indicates the risk of aneurysm rupture.</description><identifier>ISSN: 0022-3085</identifier><identifier>ISSN: 1933-0693</identifier><identifier>EISSN: 1933-0693</identifier><identifier>DOI: 10.3171/2018.12.jns182897</identifier><identifier>PMID: 30875692</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of neurosurgery, 2020-04, Vol.132 (4), p.1116-1122</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-53e9ba2504e2b50d4bae758efae90324571e13c77e2a06971f5a591176f799e53</citedby><cites>FETCH-LOGICAL-c367t-53e9ba2504e2b50d4bae758efae90324571e13c77e2a06971f5a591176f799e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30875692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Tomoaki</creatorcontrib><creatorcontrib>Stapleton, Christopher J</creatorcontrib><creatorcontrib>Koch, Matthew J</creatorcontrib><creatorcontrib>Tanaka, Kazutoshi</creatorcontrib><creatorcontrib>Fujimura, Soichiro</creatorcontrib><creatorcontrib>Suzuki, Takashi</creatorcontrib><creatorcontrib>Yanagisawa, Takeshi</creatorcontrib><creatorcontrib>Yamamoto, Makoto</creatorcontrib><creatorcontrib>Fujii, Yukihiko</creatorcontrib><creatorcontrib>Murayama, Yuichi</creatorcontrib><creatorcontrib>Patel, Aman B</creatorcontrib><title>Decreased wall shear stress at high-pressure areas predicts the rupture point in ruptured intracranial aneurysms</title><title>Journal of neurosurgery</title><addtitle>J Neurosurg</addtitle><description>Degenerative cerebral aneurysm walls are associated with aneurysm rupture and subarachnoid hemorrhage. Thin-walled regions (TWRs) represent fragile areas that may eventually lead to aneurysm rupture. Previous computational fluid dynamics (CFD) studies reported the correlation of maximum pressure (Pmax) areas and TWRs; however, the correlation with aneurysm rupture has not been established. This study aims to investigate this hemodynamic correlation.
The aneurysmal wall surface at the Pmax areas was intraoperatively evaluated using a fluid flow formula under pulsatile blood flow conditions in 23 patients with 23 saccular middle cerebral artery (MCA) bifurcation aneurysms (16 unruptured and 7 ruptured). The pressure difference (Pd) at the Pmax areas was calculated by subtracting the average pressure (Pave) from the Pmax and normalized by dividing this by the dynamic pressure at the aneurysm inlet side. The wall shear stress (WSS) was also calculated at the Pmax areas, aneurysm dome, and parent artery. These hemodynamic parameters were used to validate the correlation with TWRs in unruptured MCA aneurysms. The characteristic hemodynamic parameters at the rupture points in ruptured MCA aneurysms were then determined.
In 13 of 16 unruptured aneurysms (81.2%), Pmax areas were identified that corresponded to TWRs. In 5 of the 7 ruptured cerebral aneurysms, the Pmax areas coincided with the rupture point. At these areas, the Pd values were not higher than those of the TWRs in unruptured cerebral aneurysms; however, minimum WSS, time-averaged WSS, and normalized WSS at the rupture point were significantly lower than those of the TWRs in unruptured aneurysms (p < 0.01).
At the Pmax area of TWRs, decreased WSS appears to be the crucial hemodynamic parameter that indicates the risk of aneurysm rupture.</description><issn>0022-3085</issn><issn>1933-0693</issn><issn>1933-0693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqXwAWyQl2xSPHYcx0vEG1WwANaRk0xoqjQNHkeof0-itqzmdedq5jB2CWKuwMCNFJDOQc5XLUEqU2uO2BSsUpFIrDpmUyGkjJRI9YSdEa2EgCRO5CmbDD2jEyunrLvHwqMjLPmvaxpOS3SeU_BIxF3gy_p7GXVj1XvkbpTyoSzrIhAPS-S-78I46jZ1G3jdHhrlkAfvCu_a2jXctdj7La3pnJ1UriG82McZ-3p8-Lx7jhbvTy93t4uoUIkJkVZocye1iFHmWpRx7tDoFCuHVigZawMIqjAGpRu-NVBppy2ASSpjLWo1Y9c7385vfnqkkK1rKrBphks2PWVyAAWJVEIOUthJC78h8lhlna_Xzm8zENkIOhtBZyCz17ePHehh52pv3-drLP83DmTVH9h3eyU</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Suzuki, Tomoaki</creator><creator>Stapleton, Christopher J</creator><creator>Koch, Matthew J</creator><creator>Tanaka, Kazutoshi</creator><creator>Fujimura, Soichiro</creator><creator>Suzuki, Takashi</creator><creator>Yanagisawa, Takeshi</creator><creator>Yamamoto, Makoto</creator><creator>Fujii, Yukihiko</creator><creator>Murayama, Yuichi</creator><creator>Patel, Aman B</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200401</creationdate><title>Decreased wall shear stress at high-pressure areas predicts the rupture point in ruptured intracranial aneurysms</title><author>Suzuki, Tomoaki ; Stapleton, Christopher J ; Koch, Matthew J ; Tanaka, Kazutoshi ; Fujimura, Soichiro ; Suzuki, Takashi ; Yanagisawa, Takeshi ; Yamamoto, Makoto ; Fujii, Yukihiko ; Murayama, Yuichi ; Patel, Aman B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-53e9ba2504e2b50d4bae758efae90324571e13c77e2a06971f5a591176f799e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Tomoaki</creatorcontrib><creatorcontrib>Stapleton, Christopher J</creatorcontrib><creatorcontrib>Koch, Matthew J</creatorcontrib><creatorcontrib>Tanaka, Kazutoshi</creatorcontrib><creatorcontrib>Fujimura, Soichiro</creatorcontrib><creatorcontrib>Suzuki, Takashi</creatorcontrib><creatorcontrib>Yanagisawa, Takeshi</creatorcontrib><creatorcontrib>Yamamoto, Makoto</creatorcontrib><creatorcontrib>Fujii, Yukihiko</creatorcontrib><creatorcontrib>Murayama, Yuichi</creatorcontrib><creatorcontrib>Patel, Aman B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Tomoaki</au><au>Stapleton, Christopher J</au><au>Koch, Matthew J</au><au>Tanaka, Kazutoshi</au><au>Fujimura, Soichiro</au><au>Suzuki, Takashi</au><au>Yanagisawa, Takeshi</au><au>Yamamoto, Makoto</au><au>Fujii, Yukihiko</au><au>Murayama, Yuichi</au><au>Patel, Aman B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decreased wall shear stress at high-pressure areas predicts the rupture point in ruptured intracranial aneurysms</atitle><jtitle>Journal of neurosurgery</jtitle><addtitle>J Neurosurg</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>132</volume><issue>4</issue><spage>1116</spage><epage>1122</epage><pages>1116-1122</pages><issn>0022-3085</issn><issn>1933-0693</issn><eissn>1933-0693</eissn><abstract>Degenerative cerebral aneurysm walls are associated with aneurysm rupture and subarachnoid hemorrhage. Thin-walled regions (TWRs) represent fragile areas that may eventually lead to aneurysm rupture. Previous computational fluid dynamics (CFD) studies reported the correlation of maximum pressure (Pmax) areas and TWRs; however, the correlation with aneurysm rupture has not been established. This study aims to investigate this hemodynamic correlation.
The aneurysmal wall surface at the Pmax areas was intraoperatively evaluated using a fluid flow formula under pulsatile blood flow conditions in 23 patients with 23 saccular middle cerebral artery (MCA) bifurcation aneurysms (16 unruptured and 7 ruptured). The pressure difference (Pd) at the Pmax areas was calculated by subtracting the average pressure (Pave) from the Pmax and normalized by dividing this by the dynamic pressure at the aneurysm inlet side. The wall shear stress (WSS) was also calculated at the Pmax areas, aneurysm dome, and parent artery. These hemodynamic parameters were used to validate the correlation with TWRs in unruptured MCA aneurysms. The characteristic hemodynamic parameters at the rupture points in ruptured MCA aneurysms were then determined.
In 13 of 16 unruptured aneurysms (81.2%), Pmax areas were identified that corresponded to TWRs. In 5 of the 7 ruptured cerebral aneurysms, the Pmax areas coincided with the rupture point. At these areas, the Pd values were not higher than those of the TWRs in unruptured cerebral aneurysms; however, minimum WSS, time-averaged WSS, and normalized WSS at the rupture point were significantly lower than those of the TWRs in unruptured aneurysms (p < 0.01).
At the Pmax area of TWRs, decreased WSS appears to be the crucial hemodynamic parameter that indicates the risk of aneurysm rupture.</abstract><cop>United States</cop><pmid>30875692</pmid><doi>10.3171/2018.12.jns182897</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3085 |
ispartof | Journal of neurosurgery, 2020-04, Vol.132 (4), p.1116-1122 |
issn | 0022-3085 1933-0693 1933-0693 |
language | eng |
recordid | cdi_proquest_miscellaneous_2193162302 |
source | EZB-FREE-00999 freely available EZB journals |
title | Decreased wall shear stress at high-pressure areas predicts the rupture point in ruptured intracranial aneurysms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decreased%20wall%20shear%20stress%20at%20high-pressure%20areas%20predicts%20the%20rupture%20point%20in%20ruptured%20intracranial%20aneurysms&rft.jtitle=Journal%20of%20neurosurgery&rft.au=Suzuki,%20Tomoaki&rft.date=2020-04-01&rft.volume=132&rft.issue=4&rft.spage=1116&rft.epage=1122&rft.pages=1116-1122&rft.issn=0022-3085&rft.eissn=1933-0693&rft_id=info:doi/10.3171/2018.12.jns182897&rft_dat=%3Cproquest_cross%3E2193162302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193162302&rft_id=info:pmid/30875692&rfr_iscdi=true |