Regulation of transposable elements by DNA modifications
Maintenance of genome stability requires control over the expression of transposable elements (TEs), whose activity can have substantial deleterious effects on the host. Chemical modification of DNA is a commonly used strategy to achieve this, and it has long been argued that the emergence of 5-meth...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Genetics 2019-07, Vol.20 (7), p.417-431 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 7 |
container_start_page | 417 |
container_title | Nature reviews. Genetics |
container_volume | 20 |
creator | Deniz, Özgen Frost, Jennifer M. Branco, Miguel R. |
description | Maintenance of genome stability requires control over the expression of transposable elements (TEs), whose activity can have substantial deleterious effects on the host. Chemical modification of DNA is a commonly used strategy to achieve this, and it has long been argued that the emergence of 5-methylcytosine (5mC) in many species was driven by the requirement to silence TEs. Potential roles in TE regulation have also been suggested for other DNA modifications, such as
N
6-methyladenine and oxidation derivatives of 5mC, although the underlying mechanistic relationships are poorly understood. Here, we discuss current evidence implicating DNA modifications and DNA-modifying enzymes in TE regulation across different species.
Transposable elements (TEs) need to be tightly regulated in genomes to prevent the detrimental consequences of transposition. In this Review, Deniz, Frost and Branco discuss how DNA methylation dynamics play a central role in the multilayered epigenetic mechanisms regulating TEs. Beyond roles for 5-methylcytosine (5mC), they discuss TET-mediated oxidation products of 5mC, as well as ongoing debates about the functional relevance of adenine methylation. |
doi_str_mv | 10.1038/s41576-019-0106-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2191360252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A589682127</galeid><sourcerecordid>A589682127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-5208cbfd21d4034be3d490fc416253038b5601f449b567e7a38312417e9176913</originalsourceid><addsrcrecordid>eNp1kl1rFTEQhoMotlZ_gDeyIEi92JrJ5-7loVYtFIWq1yG7Ozndkt0cd3bB_ntzemrrESWEDMnzDjOTl7GXwE-Ay-odKdDWlBzqvLkpzSN2CMpCyblRj-9jbQ7YM6JrzsGAlU_ZgeSVsdrCIasucb1EP_dpLFIo5smPtEnkm4gFRhxwnKlobor3n1fFkLo-9O0tTM_Zk-Aj4Yu784h9_3D27fRTefHl4_np6qJsNVdzqQWv2iZ0AjrFpWpQdqrmoVVghJa5iUYbDkGpOgcWrZeVBKHAYg3W1CCP2PEu72ZKPxak2Q09tRijHzEt5ARkyHChRUZf_4Vep2Uac3VOCCWsFbWpHqi1j-j6MaTcdLtN6la6yoQAYTN18g8qrw6Hvk0jhj7f7wne7gkyM-PPee0XInf-9XKfffMHe4U-zleU4nI72H0QdmA7JaIJg9tM_eCnGwfcbS3gdhZw2QJuawFnsubV3RSWZsDuXvH7zzMgdgDlp3GN08OY_p_1F3V5tRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242772968</pqid></control><display><type>article</type><title>Regulation of transposable elements by DNA modifications</title><source>MEDLINE</source><source>SpringerLink Journals (MCLS)</source><source>Nature</source><creator>Deniz, Özgen ; Frost, Jennifer M. ; Branco, Miguel R.</creator><creatorcontrib>Deniz, Özgen ; Frost, Jennifer M. ; Branco, Miguel R.</creatorcontrib><description>Maintenance of genome stability requires control over the expression of transposable elements (TEs), whose activity can have substantial deleterious effects on the host. Chemical modification of DNA is a commonly used strategy to achieve this, and it has long been argued that the emergence of 5-methylcytosine (5mC) in many species was driven by the requirement to silence TEs. Potential roles in TE regulation have also been suggested for other DNA modifications, such as
N
6-methyladenine and oxidation derivatives of 5mC, although the underlying mechanistic relationships are poorly understood. Here, we discuss current evidence implicating DNA modifications and DNA-modifying enzymes in TE regulation across different species.
Transposable elements (TEs) need to be tightly regulated in genomes to prevent the detrimental consequences of transposition. In this Review, Deniz, Frost and Branco discuss how DNA methylation dynamics play a central role in the multilayered epigenetic mechanisms regulating TEs. Beyond roles for 5-methylcytosine (5mC), they discuss TET-mediated oxidation products of 5mC, as well as ongoing debates about the functional relevance of adenine methylation.</description><identifier>ISSN: 1471-0056</identifier><identifier>EISSN: 1471-0064</identifier><identifier>DOI: 10.1038/s41576-019-0106-6</identifier><identifier>PMID: 30867571</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>5-Methylcytosine - metabolism ; 631/181/2474 ; 631/208/176 ; 631/208/200 ; 631/208/212/177 ; 631/208/212/2305 ; 631/208/726/2001/1428 ; 631/337/176/1988 ; Adenosine - analogs & derivatives ; Adenosine - metabolism ; Agriculture ; Analysis ; Animal Genetics and Genomics ; Animals ; Biological Evolution ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Chemical modification ; Deoxyribonucleic acid ; DNA ; DNA (Cytosine-5-)-Methyltransferases - genetics ; DNA (Cytosine-5-)-Methyltransferases - metabolism ; DNA Methylation ; DNA Transposable Elements ; Epigenesis, Genetic ; Gene expression ; Gene Function ; Gene Transfer, Horizontal ; Genetic Drift ; Genomes ; Human Genetics ; Humans ; Methylation ; N6-methyladenosine ; Oxidation ; Plants - genetics ; Plants - metabolism ; Review Article ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Transposons</subject><ispartof>Nature reviews. Genetics, 2019-07, Vol.20 (7), p.417-431</ispartof><rights>Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>2019© Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-5208cbfd21d4034be3d490fc416253038b5601f449b567e7a38312417e9176913</citedby><cites>FETCH-LOGICAL-c504t-5208cbfd21d4034be3d490fc416253038b5601f449b567e7a38312417e9176913</cites><orcidid>0000-0001-7268-1923 ; 0000-0002-3057-6313 ; 0000-0001-9447-1548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41576-019-0106-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41576-019-0106-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30867571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deniz, Özgen</creatorcontrib><creatorcontrib>Frost, Jennifer M.</creatorcontrib><creatorcontrib>Branco, Miguel R.</creatorcontrib><title>Regulation of transposable elements by DNA modifications</title><title>Nature reviews. Genetics</title><addtitle>Nat Rev Genet</addtitle><addtitle>Nat Rev Genet</addtitle><description>Maintenance of genome stability requires control over the expression of transposable elements (TEs), whose activity can have substantial deleterious effects on the host. Chemical modification of DNA is a commonly used strategy to achieve this, and it has long been argued that the emergence of 5-methylcytosine (5mC) in many species was driven by the requirement to silence TEs. Potential roles in TE regulation have also been suggested for other DNA modifications, such as
N
6-methyladenine and oxidation derivatives of 5mC, although the underlying mechanistic relationships are poorly understood. Here, we discuss current evidence implicating DNA modifications and DNA-modifying enzymes in TE regulation across different species.
Transposable elements (TEs) need to be tightly regulated in genomes to prevent the detrimental consequences of transposition. In this Review, Deniz, Frost and Branco discuss how DNA methylation dynamics play a central role in the multilayered epigenetic mechanisms regulating TEs. Beyond roles for 5-methylcytosine (5mC), they discuss TET-mediated oxidation products of 5mC, as well as ongoing debates about the functional relevance of adenine methylation.</description><subject>5-Methylcytosine - metabolism</subject><subject>631/181/2474</subject><subject>631/208/176</subject><subject>631/208/200</subject><subject>631/208/212/177</subject><subject>631/208/212/2305</subject><subject>631/208/726/2001/1428</subject><subject>631/337/176/1988</subject><subject>Adenosine - analogs & derivatives</subject><subject>Adenosine - metabolism</subject><subject>Agriculture</subject><subject>Analysis</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Chemical modification</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA (Cytosine-5-)-Methyltransferases - genetics</subject><subject>DNA (Cytosine-5-)-Methyltransferases - metabolism</subject><subject>DNA Methylation</subject><subject>DNA Transposable Elements</subject><subject>Epigenesis, Genetic</subject><subject>Gene expression</subject><subject>Gene Function</subject><subject>Gene Transfer, Horizontal</subject><subject>Genetic Drift</subject><subject>Genomes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Methylation</subject><subject>N6-methyladenosine</subject><subject>Oxidation</subject><subject>Plants - genetics</subject><subject>Plants - metabolism</subject><subject>Review Article</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Transposons</subject><issn>1471-0056</issn><issn>1471-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kl1rFTEQhoMotlZ_gDeyIEi92JrJ5-7loVYtFIWq1yG7Ozndkt0cd3bB_ntzemrrESWEDMnzDjOTl7GXwE-Ay-odKdDWlBzqvLkpzSN2CMpCyblRj-9jbQ7YM6JrzsGAlU_ZgeSVsdrCIasucb1EP_dpLFIo5smPtEnkm4gFRhxwnKlobor3n1fFkLo-9O0tTM_Zk-Aj4Yu784h9_3D27fRTefHl4_np6qJsNVdzqQWv2iZ0AjrFpWpQdqrmoVVghJa5iUYbDkGpOgcWrZeVBKHAYg3W1CCP2PEu72ZKPxak2Q09tRijHzEt5ARkyHChRUZf_4Vep2Uac3VOCCWsFbWpHqi1j-j6MaTcdLtN6la6yoQAYTN18g8qrw6Hvk0jhj7f7wne7gkyM-PPee0XInf-9XKfffMHe4U-zleU4nI72H0QdmA7JaIJg9tM_eCnGwfcbS3gdhZw2QJuawFnsubV3RSWZsDuXvH7zzMgdgDlp3GN08OY_p_1F3V5tRE</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Deniz, Özgen</creator><creator>Frost, Jennifer M.</creator><creator>Branco, Miguel R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7268-1923</orcidid><orcidid>https://orcid.org/0000-0002-3057-6313</orcidid><orcidid>https://orcid.org/0000-0001-9447-1548</orcidid></search><sort><creationdate>20190701</creationdate><title>Regulation of transposable elements by DNA modifications</title><author>Deniz, Özgen ; Frost, Jennifer M. ; Branco, Miguel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-5208cbfd21d4034be3d490fc416253038b5601f449b567e7a38312417e9176913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>5-Methylcytosine - metabolism</topic><topic>631/181/2474</topic><topic>631/208/176</topic><topic>631/208/200</topic><topic>631/208/212/177</topic><topic>631/208/212/2305</topic><topic>631/208/726/2001/1428</topic><topic>631/337/176/1988</topic><topic>Adenosine - analogs & derivatives</topic><topic>Adenosine - metabolism</topic><topic>Agriculture</topic><topic>Analysis</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Chemical modification</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA (Cytosine-5-)-Methyltransferases - genetics</topic><topic>DNA (Cytosine-5-)-Methyltransferases - metabolism</topic><topic>DNA Methylation</topic><topic>DNA Transposable Elements</topic><topic>Epigenesis, Genetic</topic><topic>Gene expression</topic><topic>Gene Function</topic><topic>Gene Transfer, Horizontal</topic><topic>Genetic Drift</topic><topic>Genomes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Methylation</topic><topic>N6-methyladenosine</topic><topic>Oxidation</topic><topic>Plants - genetics</topic><topic>Plants - metabolism</topic><topic>Review Article</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deniz, Özgen</creatorcontrib><creatorcontrib>Frost, Jennifer M.</creatorcontrib><creatorcontrib>Branco, Miguel R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deniz, Özgen</au><au>Frost, Jennifer M.</au><au>Branco, Miguel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of transposable elements by DNA modifications</atitle><jtitle>Nature reviews. Genetics</jtitle><stitle>Nat Rev Genet</stitle><addtitle>Nat Rev Genet</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>20</volume><issue>7</issue><spage>417</spage><epage>431</epage><pages>417-431</pages><issn>1471-0056</issn><eissn>1471-0064</eissn><abstract>Maintenance of genome stability requires control over the expression of transposable elements (TEs), whose activity can have substantial deleterious effects on the host. Chemical modification of DNA is a commonly used strategy to achieve this, and it has long been argued that the emergence of 5-methylcytosine (5mC) in many species was driven by the requirement to silence TEs. Potential roles in TE regulation have also been suggested for other DNA modifications, such as
N
6-methyladenine and oxidation derivatives of 5mC, although the underlying mechanistic relationships are poorly understood. Here, we discuss current evidence implicating DNA modifications and DNA-modifying enzymes in TE regulation across different species.
Transposable elements (TEs) need to be tightly regulated in genomes to prevent the detrimental consequences of transposition. In this Review, Deniz, Frost and Branco discuss how DNA methylation dynamics play a central role in the multilayered epigenetic mechanisms regulating TEs. Beyond roles for 5-methylcytosine (5mC), they discuss TET-mediated oxidation products of 5mC, as well as ongoing debates about the functional relevance of adenine methylation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30867571</pmid><doi>10.1038/s41576-019-0106-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7268-1923</orcidid><orcidid>https://orcid.org/0000-0002-3057-6313</orcidid><orcidid>https://orcid.org/0000-0001-9447-1548</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-0056 |
ispartof | Nature reviews. Genetics, 2019-07, Vol.20 (7), p.417-431 |
issn | 1471-0056 1471-0064 |
language | eng |
recordid | cdi_proquest_miscellaneous_2191360252 |
source | MEDLINE; SpringerLink Journals (MCLS); Nature |
subjects | 5-Methylcytosine - metabolism 631/181/2474 631/208/176 631/208/200 631/208/212/177 631/208/212/2305 631/208/726/2001/1428 631/337/176/1988 Adenosine - analogs & derivatives Adenosine - metabolism Agriculture Analysis Animal Genetics and Genomics Animals Biological Evolution Biomedical and Life Sciences Biomedicine Cancer Research Chemical modification Deoxyribonucleic acid DNA DNA (Cytosine-5-)-Methyltransferases - genetics DNA (Cytosine-5-)-Methyltransferases - metabolism DNA Methylation DNA Transposable Elements Epigenesis, Genetic Gene expression Gene Function Gene Transfer, Horizontal Genetic Drift Genomes Human Genetics Humans Methylation N6-methyladenosine Oxidation Plants - genetics Plants - metabolism Review Article RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Transposons |
title | Regulation of transposable elements by DNA modifications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20transposable%20elements%20by%20DNA%20modifications&rft.jtitle=Nature%20reviews.%20Genetics&rft.au=Deniz,%20%C3%96zgen&rft.date=2019-07-01&rft.volume=20&rft.issue=7&rft.spage=417&rft.epage=431&rft.pages=417-431&rft.issn=1471-0056&rft.eissn=1471-0064&rft_id=info:doi/10.1038/s41576-019-0106-6&rft_dat=%3Cgale_proqu%3EA589682127%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242772968&rft_id=info:pmid/30867571&rft_galeid=A589682127&rfr_iscdi=true |