Intermittent plasticity in individual grains: A study using high energy x-ray diffraction
AbstractLong-standing evidence suggests that plasticity in metals may proceed in an intermittent fashion. While the documentation of intermittency in plastically deforming materials has been achieved in several experimental settings, efforts to draw connections from dislocation motion and structure...
Gespeichert in:
Veröffentlicht in: | Structural dynamics (Melville, N.Y.) N.Y.), 2019-01, Vol.6 (1), p.014501-014501 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 014501 |
---|---|
container_issue | 1 |
container_start_page | 014501 |
container_title | Structural dynamics (Melville, N.Y.) |
container_volume | 6 |
creator | Chatterjee, K. Beaudoin, A. J. Pagan, D. C. Shade, P. A. Philipp, H. T. Tate, M. W. Gruner, S. M. Kenesei, P. Park, J.-S. |
description | AbstractLong-standing evidence suggests that plasticity in metals may proceed in an intermittent fashion. While the documentation of intermittency in plastically deforming materials has been achieved in several experimental settings, efforts to draw connections from dislocation motion and structure development to stress relaxation have been limited, especially in the bulk of deforming polycrystals. This work uses high energy x-ray diffraction measurements to build these links by characterizing plastic deformation events inside individual deforming grains in both the titanium alloy, Ti-7Al, and the magnesium alloy, AZ31. This analysis is performed by combining macroscopic stress relaxation data, complete grain stress states found using far-field high energy diffraction microscopy, and rapid x-ray diffraction spot measurements made using a Mixed-Mode Pixel Array Detector. Changes in the dislocation content within the deforming grains are monitored using the evolution of the full 3-D shapes of the diffraction spot intensity distributions in reciprocal space. The results for the Ti-7Al alloy show the presence of large stress fluctuations in contrast to AZ31, which shows a lesser degree of intermittent plastic flow. |
doi_str_mv | 10.1063/1.5068756 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2191358296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1ee7b4a61d32487480a3fec4a8570073</doaj_id><sourcerecordid>2201116944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-1f4099261d386c2796c86b0066c92f8b6de19a69cbdde2774c3ada4759bcb6533</originalsourceid><addsrcrecordid>eNp9kluL1DAYhoso7rLuhX9Ait6oMGtOzcELYVk8DCx4oxdehTRJOxk6yZikg_33pnYcdxWEhITk4X2_U1U9heAKAorfwKsGUM4a-qA6RxiJFWOMP7xzP6suU9oCACBEDSP4cXWGAae87PPq29pnG3cuZ-tzvR9Uyk67PNXOl2XcwZlRDXUflfPpbX1dpzyaqR6T8329cf2mtt7Gfqp_rKKaauO6LiqdXfBPqkedGpK9PJ4X1dcP77_cfFrdfv64vrm-XemG0ryCHQFCIAoN5lQjJqjmtAWAUi1Qx1tqLBSKCt0aYxFjRGNlFGGNaHVLG4wvqvWia4Layn10OxUnGZSTvx5C7KWKJanBSmgta4mavRDhjHCgcGc1UbxhALBZ692itR_bnTW61CSq4Z7o_R_vNrIPB0kJIALyIvB8EQiljjKVSlq90cF7q7OEDaLFs0Avjy4xfB9tynLnkrbDoLwNY5IICogbjgQt6Iu_0G0Yoy_1lAiVhkIqCCnUq4XSMaQUbXeKGAI5D4mE8jgkhX12N8UT-XskCvB6Aebo1dzJE3MI8Y-S3Jvuf_C_1j8BYIbSAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201116944</pqid></control><display><type>article</type><title>Intermittent plasticity in individual grains: A study using high energy x-ray diffraction</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Chatterjee, K. ; Beaudoin, A. J. ; Pagan, D. C. ; Shade, P. A. ; Philipp, H. T. ; Tate, M. W. ; Gruner, S. M. ; Kenesei, P. ; Park, J.-S.</creator><creatorcontrib>Chatterjee, K. ; Beaudoin, A. J. ; Pagan, D. C. ; Shade, P. A. ; Philipp, H. T. ; Tate, M. W. ; Gruner, S. M. ; Kenesei, P. ; Park, J.-S. ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>AbstractLong-standing evidence suggests that plasticity in metals may proceed in an intermittent fashion. While the documentation of intermittency in plastically deforming materials has been achieved in several experimental settings, efforts to draw connections from dislocation motion and structure development to stress relaxation have been limited, especially in the bulk of deforming polycrystals. This work uses high energy x-ray diffraction measurements to build these links by characterizing plastic deformation events inside individual deforming grains in both the titanium alloy, Ti-7Al, and the magnesium alloy, AZ31. This analysis is performed by combining macroscopic stress relaxation data, complete grain stress states found using far-field high energy diffraction microscopy, and rapid x-ray diffraction spot measurements made using a Mixed-Mode Pixel Array Detector. Changes in the dislocation content within the deforming grains are monitored using the evolution of the full 3-D shapes of the diffraction spot intensity distributions in reciprocal space. The results for the Ti-7Al alloy show the presence of large stress fluctuations in contrast to AZ31, which shows a lesser degree of intermittent plastic flow.</description><identifier>ISSN: 2329-7778</identifier><identifier>EISSN: 2329-7778</identifier><identifier>DOI: 10.1063/1.5068756</identifier><identifier>PMID: 30868086</identifier><identifier>CODEN: SDTYAE</identifier><language>eng</language><publisher>United States: American Institute of Physics, Inc</publisher><subject>Change detection ; Deformation ; diffraction ; Dislocations ; Energy ; Grain size ; Grains ; Laboratories ; Magnesium alloys ; Magnesium base alloys ; MATERIALS SCIENCE ; metal plasticity ; Microscopy ; Plastic deformation ; Plastic flow ; Plastic properties ; Polycrystals ; Sensors ; Shear stress ; Stress relaxation ; Stress state ; Titanium base alloys ; Variation ; X-ray diffraction</subject><ispartof>Structural dynamics (Melville, N.Y.), 2019-01, Vol.6 (1), p.014501-014501</ispartof><rights>Author(s)</rights><rights>2019 Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Author(s). 2019 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-1f4099261d386c2796c86b0066c92f8b6de19a69cbdde2774c3ada4759bcb6533</citedby><cites>FETCH-LOGICAL-c566t-1f4099261d386c2796c86b0066c92f8b6de19a69cbdde2774c3ada4759bcb6533</cites><orcidid>0000-0002-1171-4426 ; 0000000211714426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404918/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404918/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30868086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1526480$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatterjee, K.</creatorcontrib><creatorcontrib>Beaudoin, A. J.</creatorcontrib><creatorcontrib>Pagan, D. C.</creatorcontrib><creatorcontrib>Shade, P. A.</creatorcontrib><creatorcontrib>Philipp, H. T.</creatorcontrib><creatorcontrib>Tate, M. W.</creatorcontrib><creatorcontrib>Gruner, S. M.</creatorcontrib><creatorcontrib>Kenesei, P.</creatorcontrib><creatorcontrib>Park, J.-S.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Intermittent plasticity in individual grains: A study using high energy x-ray diffraction</title><title>Structural dynamics (Melville, N.Y.)</title><addtitle>Struct Dyn</addtitle><description>AbstractLong-standing evidence suggests that plasticity in metals may proceed in an intermittent fashion. While the documentation of intermittency in plastically deforming materials has been achieved in several experimental settings, efforts to draw connections from dislocation motion and structure development to stress relaxation have been limited, especially in the bulk of deforming polycrystals. This work uses high energy x-ray diffraction measurements to build these links by characterizing plastic deformation events inside individual deforming grains in both the titanium alloy, Ti-7Al, and the magnesium alloy, AZ31. This analysis is performed by combining macroscopic stress relaxation data, complete grain stress states found using far-field high energy diffraction microscopy, and rapid x-ray diffraction spot measurements made using a Mixed-Mode Pixel Array Detector. Changes in the dislocation content within the deforming grains are monitored using the evolution of the full 3-D shapes of the diffraction spot intensity distributions in reciprocal space. The results for the Ti-7Al alloy show the presence of large stress fluctuations in contrast to AZ31, which shows a lesser degree of intermittent plastic flow.</description><subject>Change detection</subject><subject>Deformation</subject><subject>diffraction</subject><subject>Dislocations</subject><subject>Energy</subject><subject>Grain size</subject><subject>Grains</subject><subject>Laboratories</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>MATERIALS SCIENCE</subject><subject>metal plasticity</subject><subject>Microscopy</subject><subject>Plastic deformation</subject><subject>Plastic flow</subject><subject>Plastic properties</subject><subject>Polycrystals</subject><subject>Sensors</subject><subject>Shear stress</subject><subject>Stress relaxation</subject><subject>Stress state</subject><subject>Titanium base alloys</subject><subject>Variation</subject><subject>X-ray diffraction</subject><issn>2329-7778</issn><issn>2329-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kluL1DAYhoso7rLuhX9Ait6oMGtOzcELYVk8DCx4oxdehTRJOxk6yZikg_33pnYcdxWEhITk4X2_U1U9heAKAorfwKsGUM4a-qA6RxiJFWOMP7xzP6suU9oCACBEDSP4cXWGAae87PPq29pnG3cuZ-tzvR9Uyk67PNXOl2XcwZlRDXUflfPpbX1dpzyaqR6T8329cf2mtt7Gfqp_rKKaauO6LiqdXfBPqkedGpK9PJ4X1dcP77_cfFrdfv64vrm-XemG0ryCHQFCIAoN5lQjJqjmtAWAUi1Qx1tqLBSKCt0aYxFjRGNlFGGNaHVLG4wvqvWia4Layn10OxUnGZSTvx5C7KWKJanBSmgta4mavRDhjHCgcGc1UbxhALBZ692itR_bnTW61CSq4Z7o_R_vNrIPB0kJIALyIvB8EQiljjKVSlq90cF7q7OEDaLFs0Avjy4xfB9tynLnkrbDoLwNY5IICogbjgQt6Iu_0G0Yoy_1lAiVhkIqCCnUq4XSMaQUbXeKGAI5D4mE8jgkhX12N8UT-XskCvB6Aebo1dzJE3MI8Y-S3Jvuf_C_1j8BYIbSAg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Chatterjee, K.</creator><creator>Beaudoin, A. J.</creator><creator>Pagan, D. C.</creator><creator>Shade, P. A.</creator><creator>Philipp, H. T.</creator><creator>Tate, M. W.</creator><creator>Gruner, S. M.</creator><creator>Kenesei, P.</creator><creator>Park, J.-S.</creator><general>American Institute of Physics, Inc</general><general>American Crystallographic Association/AIP</general><general>American Crystallographic Association</general><general>AIP Publishing LLC and ACA</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1171-4426</orcidid><orcidid>https://orcid.org/0000000211714426</orcidid></search><sort><creationdate>20190101</creationdate><title>Intermittent plasticity in individual grains: A study using high energy x-ray diffraction</title><author>Chatterjee, K. ; Beaudoin, A. J. ; Pagan, D. C. ; Shade, P. A. ; Philipp, H. T. ; Tate, M. W. ; Gruner, S. M. ; Kenesei, P. ; Park, J.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-1f4099261d386c2796c86b0066c92f8b6de19a69cbdde2774c3ada4759bcb6533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Change detection</topic><topic>Deformation</topic><topic>diffraction</topic><topic>Dislocations</topic><topic>Energy</topic><topic>Grain size</topic><topic>Grains</topic><topic>Laboratories</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>MATERIALS SCIENCE</topic><topic>metal plasticity</topic><topic>Microscopy</topic><topic>Plastic deformation</topic><topic>Plastic flow</topic><topic>Plastic properties</topic><topic>Polycrystals</topic><topic>Sensors</topic><topic>Shear stress</topic><topic>Stress relaxation</topic><topic>Stress state</topic><topic>Titanium base alloys</topic><topic>Variation</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, K.</creatorcontrib><creatorcontrib>Beaudoin, A. J.</creatorcontrib><creatorcontrib>Pagan, D. C.</creatorcontrib><creatorcontrib>Shade, P. A.</creatorcontrib><creatorcontrib>Philipp, H. T.</creatorcontrib><creatorcontrib>Tate, M. W.</creatorcontrib><creatorcontrib>Gruner, S. M.</creatorcontrib><creatorcontrib>Kenesei, P.</creatorcontrib><creatorcontrib>Park, J.-S.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Structural dynamics (Melville, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, K.</au><au>Beaudoin, A. J.</au><au>Pagan, D. C.</au><au>Shade, P. A.</au><au>Philipp, H. T.</au><au>Tate, M. W.</au><au>Gruner, S. M.</au><au>Kenesei, P.</au><au>Park, J.-S.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermittent plasticity in individual grains: A study using high energy x-ray diffraction</atitle><jtitle>Structural dynamics (Melville, N.Y.)</jtitle><addtitle>Struct Dyn</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>014501</spage><epage>014501</epage><pages>014501-014501</pages><issn>2329-7778</issn><eissn>2329-7778</eissn><coden>SDTYAE</coden><abstract>AbstractLong-standing evidence suggests that plasticity in metals may proceed in an intermittent fashion. While the documentation of intermittency in plastically deforming materials has been achieved in several experimental settings, efforts to draw connections from dislocation motion and structure development to stress relaxation have been limited, especially in the bulk of deforming polycrystals. This work uses high energy x-ray diffraction measurements to build these links by characterizing plastic deformation events inside individual deforming grains in both the titanium alloy, Ti-7Al, and the magnesium alloy, AZ31. This analysis is performed by combining macroscopic stress relaxation data, complete grain stress states found using far-field high energy diffraction microscopy, and rapid x-ray diffraction spot measurements made using a Mixed-Mode Pixel Array Detector. Changes in the dislocation content within the deforming grains are monitored using the evolution of the full 3-D shapes of the diffraction spot intensity distributions in reciprocal space. The results for the Ti-7Al alloy show the presence of large stress fluctuations in contrast to AZ31, which shows a lesser degree of intermittent plastic flow.</abstract><cop>United States</cop><pub>American Institute of Physics, Inc</pub><pmid>30868086</pmid><doi>10.1063/1.5068756</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1171-4426</orcidid><orcidid>https://orcid.org/0000000211714426</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-7778 |
ispartof | Structural dynamics (Melville, N.Y.), 2019-01, Vol.6 (1), p.014501-014501 |
issn | 2329-7778 2329-7778 |
language | eng |
recordid | cdi_proquest_miscellaneous_2191358296 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Change detection Deformation diffraction Dislocations Energy Grain size Grains Laboratories Magnesium alloys Magnesium base alloys MATERIALS SCIENCE metal plasticity Microscopy Plastic deformation Plastic flow Plastic properties Polycrystals Sensors Shear stress Stress relaxation Stress state Titanium base alloys Variation X-ray diffraction |
title | Intermittent plasticity in individual grains: A study using high energy x-ray diffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermittent%20plasticity%20in%20individual%20grains:%20A%20study%20using%20high%20energy%20x-ray%20diffraction&rft.jtitle=Structural%20dynamics%20(Melville,%20N.Y.)&rft.au=Chatterjee,%20K.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-01-01&rft.volume=6&rft.issue=1&rft.spage=014501&rft.epage=014501&rft.pages=014501-014501&rft.issn=2329-7778&rft.eissn=2329-7778&rft.coden=SDTYAE&rft_id=info:doi/10.1063/1.5068756&rft_dat=%3Cproquest_pubme%3E2201116944%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201116944&rft_id=info:pmid/30868086&rft_doaj_id=oai_doaj_org_article_1ee7b4a61d32487480a3fec4a8570073&rfr_iscdi=true |