A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency
RNA elements such as catalytic RNA, riboswitch, microRNA, and long non-coding RNA perform a major role in cellular processes. A complete understanding of cellular processes is impossible without knowing the structure–function relationship of participating RNA molecules that ultimately requires large...
Gespeichert in:
Veröffentlicht in: | Molecular biotechnology 2019-07, Vol.61 (7), p.469-476 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | 7 |
container_start_page | 469 |
container_title | Molecular biotechnology |
container_volume | 61 |
creator | Kanwal, Fariha Chen, Ting Zhang, Yunlong Simair, Altaf Lu, Changrui |
description | RNA elements such as catalytic RNA, riboswitch, microRNA, and long non-coding RNA perform a major role in cellular processes. A complete understanding of cellular processes is impossible without knowing the structure–function relationship of participating RNA molecules that ultimately requires large quantities of pure RNAs. Thus, structural/functional analyses of emerging RNAs necessitate revised protocols for improved RNA quantity and quality. Here we present a modified in vitro transcription protocol to enhance ribozyme cleaving efficiency and RNA yield by working on two variables, i.e., incubation temperature and limiting GTPs. Following an improved RNA synthesis, the target RNA is purified from transcription mixture components through denaturing size-exclusion chromatography. The protocol confirms that cyclic elevated incubation temperatures during transcription and increased concentrations of GTPs improve the production rate of RNA. Our modified in vitro transcription method improves the ribozyme cleaving efficiency and targets RNA yield by four- to fivefold that can benefit almost any RNA-related study from protein–RNA interaction analysis to crystallography. |
doi_str_mv | 10.1007/s12033-019-00167-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2191355454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940590021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-e90ebb90017418e495b72d638feb94378ce545e2834b532d14cb2d53977254693</originalsourceid><addsrcrecordid>eNp9kU1PHDEMhqOqqHy0f6AHFPXEZSCJk8nkuFpBWQmoRGmv0UzGA0E7yZLMIi2_voGlrcSBk23l8WvHLyFfOTvmjOmTzAUDqBg3FWO81pX6QPa4UqUEpj6WnGmoataoXbKf8z1jgisJn8gusKZuQMk90s_oZez94LGni0B_-ylFepPakF3yq8nHQGerVYqtu6NTpIux5I9Ir69m9OcmTHeYfaZt6Om17-LTZkQ6X2L72N4iPR0G7zwGt_lMdoZ2mfHLazwgv85Ob-bn1cWP74v57KJykjdThYZh15nyF11qlEZ1WvQ1NAN2RoJuHCqpUDQgOwWi59J1oldgtBZK1gYOyNFWtyz5sMY82dFnh8tlGzCusxXccFBFQxb02xv0Pq5TKNtZAbU2teZQILGFXIo5JxzsKvmxTRvLmX22wG4tsMUC-2KBVaXp8FV53Y3Y_2v5e_MCwBbI5SncYvo_-h3ZPys1j14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236796713</pqid></control><display><type>article</type><title>A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency</title><source>SpringerLink Journals</source><creator>Kanwal, Fariha ; Chen, Ting ; Zhang, Yunlong ; Simair, Altaf ; Lu, Changrui</creator><creatorcontrib>Kanwal, Fariha ; Chen, Ting ; Zhang, Yunlong ; Simair, Altaf ; Lu, Changrui</creatorcontrib><description>RNA elements such as catalytic RNA, riboswitch, microRNA, and long non-coding RNA perform a major role in cellular processes. A complete understanding of cellular processes is impossible without knowing the structure–function relationship of participating RNA molecules that ultimately requires large quantities of pure RNAs. Thus, structural/functional analyses of emerging RNAs necessitate revised protocols for improved RNA quantity and quality. Here we present a modified in vitro transcription protocol to enhance ribozyme cleaving efficiency and RNA yield by working on two variables, i.e., incubation temperature and limiting GTPs. Following an improved RNA synthesis, the target RNA is purified from transcription mixture components through denaturing size-exclusion chromatography. The protocol confirms that cyclic elevated incubation temperatures during transcription and increased concentrations of GTPs improve the production rate of RNA. Our modified in vitro transcription method improves the ribozyme cleaving efficiency and targets RNA yield by four- to fivefold that can benefit almost any RNA-related study from protein–RNA interaction analysis to crystallography.</description><identifier>ISSN: 1073-6085</identifier><identifier>EISSN: 1559-0305</identifier><identifier>DOI: 10.1007/s12033-019-00167-5</identifier><identifier>PMID: 30868354</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological Techniques ; Biotechnology ; Catalysis ; Cell Biology ; Cellular structure ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Crystallography ; Efficiency ; Human Genetics ; In vitro methods and tests ; Incubation ; miRNA ; Molecular structure ; Non-coding RNA ; Original Paper ; Protein Science ; Proteins ; Ribonucleic acid ; RNA ; Size exclusion chromatography ; Structure-function relationships ; Transcription</subject><ispartof>Molecular biotechnology, 2019-07, Vol.61 (7), p.469-476</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Molecular Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-e90ebb90017418e495b72d638feb94378ce545e2834b532d14cb2d53977254693</citedby><cites>FETCH-LOGICAL-c418t-e90ebb90017418e495b72d638feb94378ce545e2834b532d14cb2d53977254693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12033-019-00167-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12033-019-00167-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30868354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanwal, Fariha</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Zhang, Yunlong</creatorcontrib><creatorcontrib>Simair, Altaf</creatorcontrib><creatorcontrib>Lu, Changrui</creatorcontrib><title>A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency</title><title>Molecular biotechnology</title><addtitle>Mol Biotechnol</addtitle><addtitle>Mol Biotechnol</addtitle><description>RNA elements such as catalytic RNA, riboswitch, microRNA, and long non-coding RNA perform a major role in cellular processes. A complete understanding of cellular processes is impossible without knowing the structure–function relationship of participating RNA molecules that ultimately requires large quantities of pure RNAs. Thus, structural/functional analyses of emerging RNAs necessitate revised protocols for improved RNA quantity and quality. Here we present a modified in vitro transcription protocol to enhance ribozyme cleaving efficiency and RNA yield by working on two variables, i.e., incubation temperature and limiting GTPs. Following an improved RNA synthesis, the target RNA is purified from transcription mixture components through denaturing size-exclusion chromatography. The protocol confirms that cyclic elevated incubation temperatures during transcription and increased concentrations of GTPs improve the production rate of RNA. Our modified in vitro transcription method improves the ribozyme cleaving efficiency and targets RNA yield by four- to fivefold that can benefit almost any RNA-related study from protein–RNA interaction analysis to crystallography.</description><subject>Biochemistry</subject><subject>Biological Techniques</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Cell Biology</subject><subject>Cellular structure</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystallography</subject><subject>Efficiency</subject><subject>Human Genetics</subject><subject>In vitro methods and tests</subject><subject>Incubation</subject><subject>miRNA</subject><subject>Molecular structure</subject><subject>Non-coding RNA</subject><subject>Original Paper</subject><subject>Protein Science</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Size exclusion chromatography</subject><subject>Structure-function relationships</subject><subject>Transcription</subject><issn>1073-6085</issn><issn>1559-0305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1PHDEMhqOqqHy0f6AHFPXEZSCJk8nkuFpBWQmoRGmv0UzGA0E7yZLMIi2_voGlrcSBk23l8WvHLyFfOTvmjOmTzAUDqBg3FWO81pX6QPa4UqUEpj6WnGmoataoXbKf8z1jgisJn8gusKZuQMk90s_oZez94LGni0B_-ylFepPakF3yq8nHQGerVYqtu6NTpIux5I9Ir69m9OcmTHeYfaZt6Om17-LTZkQ6X2L72N4iPR0G7zwGt_lMdoZ2mfHLazwgv85Ob-bn1cWP74v57KJykjdThYZh15nyF11qlEZ1WvQ1NAN2RoJuHCqpUDQgOwWi59J1oldgtBZK1gYOyNFWtyz5sMY82dFnh8tlGzCusxXccFBFQxb02xv0Pq5TKNtZAbU2teZQILGFXIo5JxzsKvmxTRvLmX22wG4tsMUC-2KBVaXp8FV53Y3Y_2v5e_MCwBbI5SncYvo_-h3ZPys1j14</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Kanwal, Fariha</creator><creator>Chen, Ting</creator><creator>Zhang, Yunlong</creator><creator>Simair, Altaf</creator><creator>Lu, Changrui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20190701</creationdate><title>A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency</title><author>Kanwal, Fariha ; Chen, Ting ; Zhang, Yunlong ; Simair, Altaf ; Lu, Changrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-e90ebb90017418e495b72d638feb94378ce545e2834b532d14cb2d53977254693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biochemistry</topic><topic>Biological Techniques</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Cell Biology</topic><topic>Cellular structure</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystallography</topic><topic>Efficiency</topic><topic>Human Genetics</topic><topic>In vitro methods and tests</topic><topic>Incubation</topic><topic>miRNA</topic><topic>Molecular structure</topic><topic>Non-coding RNA</topic><topic>Original Paper</topic><topic>Protein Science</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Size exclusion chromatography</topic><topic>Structure-function relationships</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanwal, Fariha</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Zhang, Yunlong</creatorcontrib><creatorcontrib>Simair, Altaf</creatorcontrib><creatorcontrib>Lu, Changrui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanwal, Fariha</au><au>Chen, Ting</au><au>Zhang, Yunlong</au><au>Simair, Altaf</au><au>Lu, Changrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency</atitle><jtitle>Molecular biotechnology</jtitle><stitle>Mol Biotechnol</stitle><addtitle>Mol Biotechnol</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>61</volume><issue>7</issue><spage>469</spage><epage>476</epage><pages>469-476</pages><issn>1073-6085</issn><eissn>1559-0305</eissn><abstract>RNA elements such as catalytic RNA, riboswitch, microRNA, and long non-coding RNA perform a major role in cellular processes. A complete understanding of cellular processes is impossible without knowing the structure–function relationship of participating RNA molecules that ultimately requires large quantities of pure RNAs. Thus, structural/functional analyses of emerging RNAs necessitate revised protocols for improved RNA quantity and quality. Here we present a modified in vitro transcription protocol to enhance ribozyme cleaving efficiency and RNA yield by working on two variables, i.e., incubation temperature and limiting GTPs. Following an improved RNA synthesis, the target RNA is purified from transcription mixture components through denaturing size-exclusion chromatography. The protocol confirms that cyclic elevated incubation temperatures during transcription and increased concentrations of GTPs improve the production rate of RNA. Our modified in vitro transcription method improves the ribozyme cleaving efficiency and targets RNA yield by four- to fivefold that can benefit almost any RNA-related study from protein–RNA interaction analysis to crystallography.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30868354</pmid><doi>10.1007/s12033-019-00167-5</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-6085 |
ispartof | Molecular biotechnology, 2019-07, Vol.61 (7), p.469-476 |
issn | 1073-6085 1559-0305 |
language | eng |
recordid | cdi_proquest_miscellaneous_2191355454 |
source | SpringerLink Journals |
subjects | Biochemistry Biological Techniques Biotechnology Catalysis Cell Biology Cellular structure Chemical synthesis Chemistry Chemistry and Materials Science Crystallography Efficiency Human Genetics In vitro methods and tests Incubation miRNA Molecular structure Non-coding RNA Original Paper Protein Science Proteins Ribonucleic acid RNA Size exclusion chromatography Structure-function relationships Transcription |
title | A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modified%20In%20Vitro%20Transcription%20Approach%20to%20Improve%20RNA%20Synthesis%20and%20Ribozyme%20Cleavage%20Efficiency&rft.jtitle=Molecular%20biotechnology&rft.au=Kanwal,%20Fariha&rft.date=2019-07-01&rft.volume=61&rft.issue=7&rft.spage=469&rft.epage=476&rft.pages=469-476&rft.issn=1073-6085&rft.eissn=1559-0305&rft_id=info:doi/10.1007/s12033-019-00167-5&rft_dat=%3Cproquest_cross%3E1940590021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236796713&rft_id=info:pmid/30868354&rfr_iscdi=true |