A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency

RNA elements such as catalytic RNA, riboswitch, microRNA, and long non-coding RNA perform a major role in cellular processes. A complete understanding of cellular processes is impossible without knowing the structure–function relationship of participating RNA molecules that ultimately requires large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biotechnology 2019-07, Vol.61 (7), p.469-476
Hauptverfasser: Kanwal, Fariha, Chen, Ting, Zhang, Yunlong, Simair, Altaf, Lu, Changrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 7
container_start_page 469
container_title Molecular biotechnology
container_volume 61
creator Kanwal, Fariha
Chen, Ting
Zhang, Yunlong
Simair, Altaf
Lu, Changrui
description RNA elements such as catalytic RNA, riboswitch, microRNA, and long non-coding RNA perform a major role in cellular processes. A complete understanding of cellular processes is impossible without knowing the structure–function relationship of participating RNA molecules that ultimately requires large quantities of pure RNAs. Thus, structural/functional analyses of emerging RNAs necessitate revised protocols for improved RNA quantity and quality. Here we present a modified in vitro transcription protocol to enhance ribozyme cleaving efficiency and RNA yield by working on two variables, i.e., incubation temperature and limiting GTPs. Following an improved RNA synthesis, the target RNA is purified from transcription mixture components through denaturing size-exclusion chromatography. The protocol confirms that cyclic elevated incubation temperatures during transcription and increased concentrations of GTPs improve the production rate of RNA. Our modified in vitro transcription method improves the ribozyme cleaving efficiency and targets RNA yield by four- to fivefold that can benefit almost any RNA-related study from protein–RNA interaction analysis to crystallography.
doi_str_mv 10.1007/s12033-019-00167-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2191355454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940590021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-e90ebb90017418e495b72d638feb94378ce545e2834b532d14cb2d53977254693</originalsourceid><addsrcrecordid>eNp9kU1PHDEMhqOqqHy0f6AHFPXEZSCJk8nkuFpBWQmoRGmv0UzGA0E7yZLMIi2_voGlrcSBk23l8WvHLyFfOTvmjOmTzAUDqBg3FWO81pX6QPa4UqUEpj6WnGmoataoXbKf8z1jgisJn8gusKZuQMk90s_oZez94LGni0B_-ylFepPakF3yq8nHQGerVYqtu6NTpIux5I9Ir69m9OcmTHeYfaZt6Om17-LTZkQ6X2L72N4iPR0G7zwGt_lMdoZ2mfHLazwgv85Ob-bn1cWP74v57KJykjdThYZh15nyF11qlEZ1WvQ1NAN2RoJuHCqpUDQgOwWi59J1oldgtBZK1gYOyNFWtyz5sMY82dFnh8tlGzCusxXccFBFQxb02xv0Pq5TKNtZAbU2teZQILGFXIo5JxzsKvmxTRvLmX22wG4tsMUC-2KBVaXp8FV53Y3Y_2v5e_MCwBbI5SncYvo_-h3ZPys1j14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236796713</pqid></control><display><type>article</type><title>A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency</title><source>SpringerLink Journals</source><creator>Kanwal, Fariha ; Chen, Ting ; Zhang, Yunlong ; Simair, Altaf ; Lu, Changrui</creator><creatorcontrib>Kanwal, Fariha ; Chen, Ting ; Zhang, Yunlong ; Simair, Altaf ; Lu, Changrui</creatorcontrib><description>RNA elements such as catalytic RNA, riboswitch, microRNA, and long non-coding RNA perform a major role in cellular processes. A complete understanding of cellular processes is impossible without knowing the structure–function relationship of participating RNA molecules that ultimately requires large quantities of pure RNAs. Thus, structural/functional analyses of emerging RNAs necessitate revised protocols for improved RNA quantity and quality. Here we present a modified in vitro transcription protocol to enhance ribozyme cleaving efficiency and RNA yield by working on two variables, i.e., incubation temperature and limiting GTPs. Following an improved RNA synthesis, the target RNA is purified from transcription mixture components through denaturing size-exclusion chromatography. The protocol confirms that cyclic elevated incubation temperatures during transcription and increased concentrations of GTPs improve the production rate of RNA. Our modified in vitro transcription method improves the ribozyme cleaving efficiency and targets RNA yield by four- to fivefold that can benefit almost any RNA-related study from protein–RNA interaction analysis to crystallography.</description><identifier>ISSN: 1073-6085</identifier><identifier>EISSN: 1559-0305</identifier><identifier>DOI: 10.1007/s12033-019-00167-5</identifier><identifier>PMID: 30868354</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological Techniques ; Biotechnology ; Catalysis ; Cell Biology ; Cellular structure ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Crystallography ; Efficiency ; Human Genetics ; In vitro methods and tests ; Incubation ; miRNA ; Molecular structure ; Non-coding RNA ; Original Paper ; Protein Science ; Proteins ; Ribonucleic acid ; RNA ; Size exclusion chromatography ; Structure-function relationships ; Transcription</subject><ispartof>Molecular biotechnology, 2019-07, Vol.61 (7), p.469-476</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Molecular Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-e90ebb90017418e495b72d638feb94378ce545e2834b532d14cb2d53977254693</citedby><cites>FETCH-LOGICAL-c418t-e90ebb90017418e495b72d638feb94378ce545e2834b532d14cb2d53977254693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12033-019-00167-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12033-019-00167-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30868354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanwal, Fariha</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Zhang, Yunlong</creatorcontrib><creatorcontrib>Simair, Altaf</creatorcontrib><creatorcontrib>Lu, Changrui</creatorcontrib><title>A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency</title><title>Molecular biotechnology</title><addtitle>Mol Biotechnol</addtitle><addtitle>Mol Biotechnol</addtitle><description>RNA elements such as catalytic RNA, riboswitch, microRNA, and long non-coding RNA perform a major role in cellular processes. A complete understanding of cellular processes is impossible without knowing the structure–function relationship of participating RNA molecules that ultimately requires large quantities of pure RNAs. Thus, structural/functional analyses of emerging RNAs necessitate revised protocols for improved RNA quantity and quality. Here we present a modified in vitro transcription protocol to enhance ribozyme cleaving efficiency and RNA yield by working on two variables, i.e., incubation temperature and limiting GTPs. Following an improved RNA synthesis, the target RNA is purified from transcription mixture components through denaturing size-exclusion chromatography. The protocol confirms that cyclic elevated incubation temperatures during transcription and increased concentrations of GTPs improve the production rate of RNA. Our modified in vitro transcription method improves the ribozyme cleaving efficiency and targets RNA yield by four- to fivefold that can benefit almost any RNA-related study from protein–RNA interaction analysis to crystallography.</description><subject>Biochemistry</subject><subject>Biological Techniques</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Cell Biology</subject><subject>Cellular structure</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystallography</subject><subject>Efficiency</subject><subject>Human Genetics</subject><subject>In vitro methods and tests</subject><subject>Incubation</subject><subject>miRNA</subject><subject>Molecular structure</subject><subject>Non-coding RNA</subject><subject>Original Paper</subject><subject>Protein Science</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Size exclusion chromatography</subject><subject>Structure-function relationships</subject><subject>Transcription</subject><issn>1073-6085</issn><issn>1559-0305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1PHDEMhqOqqHy0f6AHFPXEZSCJk8nkuFpBWQmoRGmv0UzGA0E7yZLMIi2_voGlrcSBk23l8WvHLyFfOTvmjOmTzAUDqBg3FWO81pX6QPa4UqUEpj6WnGmoataoXbKf8z1jgisJn8gusKZuQMk90s_oZez94LGni0B_-ylFepPakF3yq8nHQGerVYqtu6NTpIux5I9Ir69m9OcmTHeYfaZt6Om17-LTZkQ6X2L72N4iPR0G7zwGt_lMdoZ2mfHLazwgv85Ob-bn1cWP74v57KJykjdThYZh15nyF11qlEZ1WvQ1NAN2RoJuHCqpUDQgOwWi59J1oldgtBZK1gYOyNFWtyz5sMY82dFnh8tlGzCusxXccFBFQxb02xv0Pq5TKNtZAbU2teZQILGFXIo5JxzsKvmxTRvLmX22wG4tsMUC-2KBVaXp8FV53Y3Y_2v5e_MCwBbI5SncYvo_-h3ZPys1j14</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Kanwal, Fariha</creator><creator>Chen, Ting</creator><creator>Zhang, Yunlong</creator><creator>Simair, Altaf</creator><creator>Lu, Changrui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20190701</creationdate><title>A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency</title><author>Kanwal, Fariha ; Chen, Ting ; Zhang, Yunlong ; Simair, Altaf ; Lu, Changrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-e90ebb90017418e495b72d638feb94378ce545e2834b532d14cb2d53977254693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biochemistry</topic><topic>Biological Techniques</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Cell Biology</topic><topic>Cellular structure</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystallography</topic><topic>Efficiency</topic><topic>Human Genetics</topic><topic>In vitro methods and tests</topic><topic>Incubation</topic><topic>miRNA</topic><topic>Molecular structure</topic><topic>Non-coding RNA</topic><topic>Original Paper</topic><topic>Protein Science</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Size exclusion chromatography</topic><topic>Structure-function relationships</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanwal, Fariha</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Zhang, Yunlong</creatorcontrib><creatorcontrib>Simair, Altaf</creatorcontrib><creatorcontrib>Lu, Changrui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanwal, Fariha</au><au>Chen, Ting</au><au>Zhang, Yunlong</au><au>Simair, Altaf</au><au>Lu, Changrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency</atitle><jtitle>Molecular biotechnology</jtitle><stitle>Mol Biotechnol</stitle><addtitle>Mol Biotechnol</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>61</volume><issue>7</issue><spage>469</spage><epage>476</epage><pages>469-476</pages><issn>1073-6085</issn><eissn>1559-0305</eissn><abstract>RNA elements such as catalytic RNA, riboswitch, microRNA, and long non-coding RNA perform a major role in cellular processes. A complete understanding of cellular processes is impossible without knowing the structure–function relationship of participating RNA molecules that ultimately requires large quantities of pure RNAs. Thus, structural/functional analyses of emerging RNAs necessitate revised protocols for improved RNA quantity and quality. Here we present a modified in vitro transcription protocol to enhance ribozyme cleaving efficiency and RNA yield by working on two variables, i.e., incubation temperature and limiting GTPs. Following an improved RNA synthesis, the target RNA is purified from transcription mixture components through denaturing size-exclusion chromatography. The protocol confirms that cyclic elevated incubation temperatures during transcription and increased concentrations of GTPs improve the production rate of RNA. Our modified in vitro transcription method improves the ribozyme cleaving efficiency and targets RNA yield by four- to fivefold that can benefit almost any RNA-related study from protein–RNA interaction analysis to crystallography.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30868354</pmid><doi>10.1007/s12033-019-00167-5</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-6085
ispartof Molecular biotechnology, 2019-07, Vol.61 (7), p.469-476
issn 1073-6085
1559-0305
language eng
recordid cdi_proquest_miscellaneous_2191355454
source SpringerLink Journals
subjects Biochemistry
Biological Techniques
Biotechnology
Catalysis
Cell Biology
Cellular structure
Chemical synthesis
Chemistry
Chemistry and Materials Science
Crystallography
Efficiency
Human Genetics
In vitro methods and tests
Incubation
miRNA
Molecular structure
Non-coding RNA
Original Paper
Protein Science
Proteins
Ribonucleic acid
RNA
Size exclusion chromatography
Structure-function relationships
Transcription
title A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modified%20In%20Vitro%20Transcription%20Approach%20to%20Improve%20RNA%20Synthesis%20and%20Ribozyme%20Cleavage%20Efficiency&rft.jtitle=Molecular%20biotechnology&rft.au=Kanwal,%20Fariha&rft.date=2019-07-01&rft.volume=61&rft.issue=7&rft.spage=469&rft.epage=476&rft.pages=469-476&rft.issn=1073-6085&rft.eissn=1559-0305&rft_id=info:doi/10.1007/s12033-019-00167-5&rft_dat=%3Cproquest_cross%3E1940590021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236796713&rft_id=info:pmid/30868354&rfr_iscdi=true