The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface

Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Physical Chemistry B 2019-03, Vol.123 (10), p.2414-2423
Hauptverfasser: Zdrali, Evangelia, Baer, Marcel D, Okur, Halil I, Mundy, Christopher J, Roke, Sylvie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2423
container_issue 10
container_start_page 2414
container_title Journal of Physical Chemistry B
container_volume 123
creator Zdrali, Evangelia
Baer, Marcel D
Okur, Halil I
Mundy, Christopher J
Roke, Sylvie
description Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characterizing planar extended (often air/water) interfaces, little is known about ion speciation at complex nanoscale biological systems. To start understanding the complex mechanisms involved, we use a hexadecane nanodroplet system, stabilized with a dilute monolayer of positively charged dodecyltrimethylammonium cations (DTA+) groups in contact with an electrolyte solution (NaSCN). Using vibrational sum frequency scattering, second harmonic scattering, ζ-potential measurements, and quantum density functional theory, we find DTA+–SCN– ion pairing at concentrations as low as 5 mM. A variety of ion species emerge at different ionic strengths, with differently oriented SCN– groups adsorbed on hydrophilic or hydrophobic parts of the surface. This diverse and heterogeneous chemical environment is surprisingly different from the behavior at extended liquid planar interfaces, where ion pairing is typically detected at molar concentrations and nanoscale system stability is no requirement.
doi_str_mv 10.1021/acs.jpcb.8b10207
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2191352347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191352347</sourcerecordid><originalsourceid>FETCH-LOGICAL-a400t-78644f47b9b46a6b16c1fec45f6f2899d2f5b039a9f90a2eb66a53ac923a47a3</originalsourceid><addsrcrecordid>eNp1kEtPAyEURonR-N67MhNXLmwFZmCGpfHZxGiMTVySC72kY9phBMbEfy-11Z0L4N5wvm9xCDlhdMwoZ5dg4_i9t2bcmLzTeovsM8HpKJ96ezNLRuUeOYjxnVIueCN3yV5Ja1lSJffJy3SOxU37iSFi8QRpCFh4V0x8V7z2aFtIbR4hFWm--u98tLDA4uFrFnw_96a1l2-QMBSTLt8OLB6RHQeLiMeb95BM726n1w-jx-f7yfXV4wgqStOobmRVuao2ylQSpGHSMoe2Ek463ig1404YWipQTlHgaKQEUYJVvISqhvKQnK1rfUytjrZNaOfWdx3apJlgohE0Q-drqA_-Y8CY9LKNFhcL6NAPUXOmWCl4WdUZpWvUBh9jQKf70C4hfGlG9Uq2zrL1SrbeyM6R0037YJY4-wv82s3AxRr4ifohdFnI_33f2vGJxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191352347</pqid></control><display><type>article</type><title>The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface</title><source>American Chemical Society Journals</source><creator>Zdrali, Evangelia ; Baer, Marcel D ; Okur, Halil I ; Mundy, Christopher J ; Roke, Sylvie</creator><creatorcontrib>Zdrali, Evangelia ; Baer, Marcel D ; Okur, Halil I ; Mundy, Christopher J ; Roke, Sylvie ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characterizing planar extended (often air/water) interfaces, little is known about ion speciation at complex nanoscale biological systems. To start understanding the complex mechanisms involved, we use a hexadecane nanodroplet system, stabilized with a dilute monolayer of positively charged dodecyltrimethylammonium cations (DTA+) groups in contact with an electrolyte solution (NaSCN). Using vibrational sum frequency scattering, second harmonic scattering, ζ-potential measurements, and quantum density functional theory, we find DTA+–SCN– ion pairing at concentrations as low as 5 mM. A variety of ion species emerge at different ionic strengths, with differently oriented SCN– groups adsorbed on hydrophilic or hydrophobic parts of the surface. This diverse and heterogeneous chemical environment is surprisingly different from the behavior at extended liquid planar interfaces, where ion pairing is typically detected at molar concentrations and nanoscale system stability is no requirement.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.8b10207</identifier><identifier>PMID: 30763096</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of Physical Chemistry B, 2019-03, Vol.123 (10), p.2414-2423</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a400t-78644f47b9b46a6b16c1fec45f6f2899d2f5b039a9f90a2eb66a53ac923a47a3</citedby><cites>FETCH-LOGICAL-a400t-78644f47b9b46a6b16c1fec45f6f2899d2f5b039a9f90a2eb66a53ac923a47a3</cites><orcidid>0000-0002-2492-1168 ; 0000-0002-6062-7871 ; 0000-0003-1378-5241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.8b10207$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b10207$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30763096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1515850$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zdrali, Evangelia</creatorcontrib><creatorcontrib>Baer, Marcel D</creatorcontrib><creatorcontrib>Okur, Halil I</creatorcontrib><creatorcontrib>Mundy, Christopher J</creatorcontrib><creatorcontrib>Roke, Sylvie</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface</title><title>Journal of Physical Chemistry B</title><addtitle>J. Phys. Chem. B</addtitle><description>Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characterizing planar extended (often air/water) interfaces, little is known about ion speciation at complex nanoscale biological systems. To start understanding the complex mechanisms involved, we use a hexadecane nanodroplet system, stabilized with a dilute monolayer of positively charged dodecyltrimethylammonium cations (DTA+) groups in contact with an electrolyte solution (NaSCN). Using vibrational sum frequency scattering, second harmonic scattering, ζ-potential measurements, and quantum density functional theory, we find DTA+–SCN– ion pairing at concentrations as low as 5 mM. A variety of ion species emerge at different ionic strengths, with differently oriented SCN– groups adsorbed on hydrophilic or hydrophobic parts of the surface. This diverse and heterogeneous chemical environment is surprisingly different from the behavior at extended liquid planar interfaces, where ion pairing is typically detected at molar concentrations and nanoscale system stability is no requirement.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPAyEURonR-N67MhNXLmwFZmCGpfHZxGiMTVySC72kY9phBMbEfy-11Z0L4N5wvm9xCDlhdMwoZ5dg4_i9t2bcmLzTeovsM8HpKJ96ezNLRuUeOYjxnVIueCN3yV5Ja1lSJffJy3SOxU37iSFi8QRpCFh4V0x8V7z2aFtIbR4hFWm--u98tLDA4uFrFnw_96a1l2-QMBSTLt8OLB6RHQeLiMeb95BM726n1w-jx-f7yfXV4wgqStOobmRVuao2ylQSpGHSMoe2Ek463ig1404YWipQTlHgaKQEUYJVvISqhvKQnK1rfUytjrZNaOfWdx3apJlgohE0Q-drqA_-Y8CY9LKNFhcL6NAPUXOmWCl4WdUZpWvUBh9jQKf70C4hfGlG9Uq2zrL1SrbeyM6R0037YJY4-wv82s3AxRr4ifohdFnI_33f2vGJxw</recordid><startdate>20190314</startdate><enddate>20190314</enddate><creator>Zdrali, Evangelia</creator><creator>Baer, Marcel D</creator><creator>Okur, Halil I</creator><creator>Mundy, Christopher J</creator><creator>Roke, Sylvie</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2492-1168</orcidid><orcidid>https://orcid.org/0000-0002-6062-7871</orcidid><orcidid>https://orcid.org/0000-0003-1378-5241</orcidid></search><sort><creationdate>20190314</creationdate><title>The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface</title><author>Zdrali, Evangelia ; Baer, Marcel D ; Okur, Halil I ; Mundy, Christopher J ; Roke, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a400t-78644f47b9b46a6b16c1fec45f6f2899d2f5b039a9f90a2eb66a53ac923a47a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zdrali, Evangelia</creatorcontrib><creatorcontrib>Baer, Marcel D</creatorcontrib><creatorcontrib>Okur, Halil I</creatorcontrib><creatorcontrib>Mundy, Christopher J</creatorcontrib><creatorcontrib>Roke, Sylvie</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of Physical Chemistry B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zdrali, Evangelia</au><au>Baer, Marcel D</au><au>Okur, Halil I</au><au>Mundy, Christopher J</au><au>Roke, Sylvie</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface</atitle><jtitle>Journal of Physical Chemistry B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2019-03-14</date><risdate>2019</risdate><volume>123</volume><issue>10</issue><spage>2414</spage><epage>2423</epage><pages>2414-2423</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characterizing planar extended (often air/water) interfaces, little is known about ion speciation at complex nanoscale biological systems. To start understanding the complex mechanisms involved, we use a hexadecane nanodroplet system, stabilized with a dilute monolayer of positively charged dodecyltrimethylammonium cations (DTA+) groups in contact with an electrolyte solution (NaSCN). Using vibrational sum frequency scattering, second harmonic scattering, ζ-potential measurements, and quantum density functional theory, we find DTA+–SCN– ion pairing at concentrations as low as 5 mM. A variety of ion species emerge at different ionic strengths, with differently oriented SCN– groups adsorbed on hydrophilic or hydrophobic parts of the surface. This diverse and heterogeneous chemical environment is surprisingly different from the behavior at extended liquid planar interfaces, where ion pairing is typically detected at molar concentrations and nanoscale system stability is no requirement.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30763096</pmid><doi>10.1021/acs.jpcb.8b10207</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2492-1168</orcidid><orcidid>https://orcid.org/0000-0002-6062-7871</orcidid><orcidid>https://orcid.org/0000-0003-1378-5241</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof Journal of Physical Chemistry B, 2019-03, Vol.123 (10), p.2414-2423
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2191352347
source American Chemical Society Journals
title The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Diverse%20Nature%20of%20Ion%20Speciation%20at%20the%20Nanoscale%20Hydrophobic/Water%20Interface&rft.jtitle=Journal%20of%20Physical%20Chemistry%20B&rft.au=Zdrali,%20Evangelia&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2019-03-14&rft.volume=123&rft.issue=10&rft.spage=2414&rft.epage=2423&rft.pages=2414-2423&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.8b10207&rft_dat=%3Cproquest_osti_%3E2191352347%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191352347&rft_id=info:pmid/30763096&rfr_iscdi=true