The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface
Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characteri...
Gespeichert in:
Veröffentlicht in: | Journal of Physical Chemistry B 2019-03, Vol.123 (10), p.2414-2423 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2423 |
---|---|
container_issue | 10 |
container_start_page | 2414 |
container_title | Journal of Physical Chemistry B |
container_volume | 123 |
creator | Zdrali, Evangelia Baer, Marcel D Okur, Halil I Mundy, Christopher J Roke, Sylvie |
description | Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characterizing planar extended (often air/water) interfaces, little is known about ion speciation at complex nanoscale biological systems. To start understanding the complex mechanisms involved, we use a hexadecane nanodroplet system, stabilized with a dilute monolayer of positively charged dodecyltrimethylammonium cations (DTA+) groups in contact with an electrolyte solution (NaSCN). Using vibrational sum frequency scattering, second harmonic scattering, ζ-potential measurements, and quantum density functional theory, we find DTA+–SCN– ion pairing at concentrations as low as 5 mM. A variety of ion species emerge at different ionic strengths, with differently oriented SCN– groups adsorbed on hydrophilic or hydrophobic parts of the surface. This diverse and heterogeneous chemical environment is surprisingly different from the behavior at extended liquid planar interfaces, where ion pairing is typically detected at molar concentrations and nanoscale system stability is no requirement. |
doi_str_mv | 10.1021/acs.jpcb.8b10207 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2191352347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191352347</sourcerecordid><originalsourceid>FETCH-LOGICAL-a400t-78644f47b9b46a6b16c1fec45f6f2899d2f5b039a9f90a2eb66a53ac923a47a3</originalsourceid><addsrcrecordid>eNp1kEtPAyEURonR-N67MhNXLmwFZmCGpfHZxGiMTVySC72kY9phBMbEfy-11Z0L4N5wvm9xCDlhdMwoZ5dg4_i9t2bcmLzTeovsM8HpKJ96ezNLRuUeOYjxnVIueCN3yV5Ja1lSJffJy3SOxU37iSFi8QRpCFh4V0x8V7z2aFtIbR4hFWm--u98tLDA4uFrFnw_96a1l2-QMBSTLt8OLB6RHQeLiMeb95BM726n1w-jx-f7yfXV4wgqStOobmRVuao2ylQSpGHSMoe2Ek463ig1404YWipQTlHgaKQEUYJVvISqhvKQnK1rfUytjrZNaOfWdx3apJlgohE0Q-drqA_-Y8CY9LKNFhcL6NAPUXOmWCl4WdUZpWvUBh9jQKf70C4hfGlG9Uq2zrL1SrbeyM6R0037YJY4-wv82s3AxRr4ifohdFnI_33f2vGJxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191352347</pqid></control><display><type>article</type><title>The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface</title><source>American Chemical Society Journals</source><creator>Zdrali, Evangelia ; Baer, Marcel D ; Okur, Halil I ; Mundy, Christopher J ; Roke, Sylvie</creator><creatorcontrib>Zdrali, Evangelia ; Baer, Marcel D ; Okur, Halil I ; Mundy, Christopher J ; Roke, Sylvie ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characterizing planar extended (often air/water) interfaces, little is known about ion speciation at complex nanoscale biological systems. To start understanding the complex mechanisms involved, we use a hexadecane nanodroplet system, stabilized with a dilute monolayer of positively charged dodecyltrimethylammonium cations (DTA+) groups in contact with an electrolyte solution (NaSCN). Using vibrational sum frequency scattering, second harmonic scattering, ζ-potential measurements, and quantum density functional theory, we find DTA+–SCN– ion pairing at concentrations as low as 5 mM. A variety of ion species emerge at different ionic strengths, with differently oriented SCN– groups adsorbed on hydrophilic or hydrophobic parts of the surface. This diverse and heterogeneous chemical environment is surprisingly different from the behavior at extended liquid planar interfaces, where ion pairing is typically detected at molar concentrations and nanoscale system stability is no requirement.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.8b10207</identifier><identifier>PMID: 30763096</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of Physical Chemistry B, 2019-03, Vol.123 (10), p.2414-2423</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a400t-78644f47b9b46a6b16c1fec45f6f2899d2f5b039a9f90a2eb66a53ac923a47a3</citedby><cites>FETCH-LOGICAL-a400t-78644f47b9b46a6b16c1fec45f6f2899d2f5b039a9f90a2eb66a53ac923a47a3</cites><orcidid>0000-0002-2492-1168 ; 0000-0002-6062-7871 ; 0000-0003-1378-5241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.8b10207$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b10207$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30763096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1515850$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zdrali, Evangelia</creatorcontrib><creatorcontrib>Baer, Marcel D</creatorcontrib><creatorcontrib>Okur, Halil I</creatorcontrib><creatorcontrib>Mundy, Christopher J</creatorcontrib><creatorcontrib>Roke, Sylvie</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface</title><title>Journal of Physical Chemistry B</title><addtitle>J. Phys. Chem. B</addtitle><description>Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characterizing planar extended (often air/water) interfaces, little is known about ion speciation at complex nanoscale biological systems. To start understanding the complex mechanisms involved, we use a hexadecane nanodroplet system, stabilized with a dilute monolayer of positively charged dodecyltrimethylammonium cations (DTA+) groups in contact with an electrolyte solution (NaSCN). Using vibrational sum frequency scattering, second harmonic scattering, ζ-potential measurements, and quantum density functional theory, we find DTA+–SCN– ion pairing at concentrations as low as 5 mM. A variety of ion species emerge at different ionic strengths, with differently oriented SCN– groups adsorbed on hydrophilic or hydrophobic parts of the surface. This diverse and heterogeneous chemical environment is surprisingly different from the behavior at extended liquid planar interfaces, where ion pairing is typically detected at molar concentrations and nanoscale system stability is no requirement.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPAyEURonR-N67MhNXLmwFZmCGpfHZxGiMTVySC72kY9phBMbEfy-11Z0L4N5wvm9xCDlhdMwoZ5dg4_i9t2bcmLzTeovsM8HpKJ96ezNLRuUeOYjxnVIueCN3yV5Ja1lSJffJy3SOxU37iSFi8QRpCFh4V0x8V7z2aFtIbR4hFWm--u98tLDA4uFrFnw_96a1l2-QMBSTLt8OLB6RHQeLiMeb95BM726n1w-jx-f7yfXV4wgqStOobmRVuao2ylQSpGHSMoe2Ek463ig1404YWipQTlHgaKQEUYJVvISqhvKQnK1rfUytjrZNaOfWdx3apJlgohE0Q-drqA_-Y8CY9LKNFhcL6NAPUXOmWCl4WdUZpWvUBh9jQKf70C4hfGlG9Uq2zrL1SrbeyM6R0037YJY4-wv82s3AxRr4ifohdFnI_33f2vGJxw</recordid><startdate>20190314</startdate><enddate>20190314</enddate><creator>Zdrali, Evangelia</creator><creator>Baer, Marcel D</creator><creator>Okur, Halil I</creator><creator>Mundy, Christopher J</creator><creator>Roke, Sylvie</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2492-1168</orcidid><orcidid>https://orcid.org/0000-0002-6062-7871</orcidid><orcidid>https://orcid.org/0000-0003-1378-5241</orcidid></search><sort><creationdate>20190314</creationdate><title>The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface</title><author>Zdrali, Evangelia ; Baer, Marcel D ; Okur, Halil I ; Mundy, Christopher J ; Roke, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a400t-78644f47b9b46a6b16c1fec45f6f2899d2f5b039a9f90a2eb66a53ac923a47a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zdrali, Evangelia</creatorcontrib><creatorcontrib>Baer, Marcel D</creatorcontrib><creatorcontrib>Okur, Halil I</creatorcontrib><creatorcontrib>Mundy, Christopher J</creatorcontrib><creatorcontrib>Roke, Sylvie</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of Physical Chemistry B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zdrali, Evangelia</au><au>Baer, Marcel D</au><au>Okur, Halil I</au><au>Mundy, Christopher J</au><au>Roke, Sylvie</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface</atitle><jtitle>Journal of Physical Chemistry B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2019-03-14</date><risdate>2019</risdate><volume>123</volume><issue>10</issue><spage>2414</spage><epage>2423</epage><pages>2414-2423</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Many biological systems are composed of nanoscale structures having hydrophobic and hydrophilic groups adjacent to one another and in contact with aqueous electrolyte solution. The interaction of ions with such structures is of fundamental importance. Although many studies have focused on characterizing planar extended (often air/water) interfaces, little is known about ion speciation at complex nanoscale biological systems. To start understanding the complex mechanisms involved, we use a hexadecane nanodroplet system, stabilized with a dilute monolayer of positively charged dodecyltrimethylammonium cations (DTA+) groups in contact with an electrolyte solution (NaSCN). Using vibrational sum frequency scattering, second harmonic scattering, ζ-potential measurements, and quantum density functional theory, we find DTA+–SCN– ion pairing at concentrations as low as 5 mM. A variety of ion species emerge at different ionic strengths, with differently oriented SCN– groups adsorbed on hydrophilic or hydrophobic parts of the surface. This diverse and heterogeneous chemical environment is surprisingly different from the behavior at extended liquid planar interfaces, where ion pairing is typically detected at molar concentrations and nanoscale system stability is no requirement.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30763096</pmid><doi>10.1021/acs.jpcb.8b10207</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2492-1168</orcidid><orcidid>https://orcid.org/0000-0002-6062-7871</orcidid><orcidid>https://orcid.org/0000-0003-1378-5241</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | Journal of Physical Chemistry B, 2019-03, Vol.123 (10), p.2414-2423 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_2191352347 |
source | American Chemical Society Journals |
title | The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Diverse%20Nature%20of%20Ion%20Speciation%20at%20the%20Nanoscale%20Hydrophobic/Water%20Interface&rft.jtitle=Journal%20of%20Physical%20Chemistry%20B&rft.au=Zdrali,%20Evangelia&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2019-03-14&rft.volume=123&rft.issue=10&rft.spage=2414&rft.epage=2423&rft.pages=2414-2423&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.8b10207&rft_dat=%3Cproquest_osti_%3E2191352347%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191352347&rft_id=info:pmid/30763096&rfr_iscdi=true |