Total generalized variation regularization for multi-modal electron tomography
In multi-modal electron tomography, tilt series of several signals such as X-ray spectra, electron energy-loss spectra, annular dark-field, or bright-field data are acquired at the same time in a transmission electron microscope and subsequently reconstructed in three dimensions. However, the acquir...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-03, Vol.11 (12), p.5617-5632 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5632 |
---|---|
container_issue | 12 |
container_start_page | 5617 |
container_title | Nanoscale |
container_volume | 11 |
creator | Huber, Richard Haberfehlner, Georg Holler, Martin Kothleitner, Gerald Bredies, Kristian |
description | In multi-modal electron tomography, tilt series of several signals such as X-ray spectra, electron energy-loss spectra, annular dark-field, or bright-field data are acquired at the same time in a transmission electron microscope and subsequently reconstructed in three dimensions. However, the acquired data are often incomplete and suffer from noise, and generally each signal is reconstructed independently of all other signals, not taking advantage of correlation between different datasets. This severely limits both the resolution and validity of the reconstructed images. In this paper, we show how image quality in multi-modal electron tomography can be greatly improved by employing variational modeling and multi-channel regularization techniques. To achieve this aim, we employ a coupled Total Generalized Variation (TGV) regularization that exploits correlation between different channels. In contrast to other regularization methods, coupled TGV regularization allows to reconstruct both hard transitions and gradual changes inside each sample, and links different channels at the level of first and higher order derivatives. This favors similar interface positions for all reconstructions, thereby improving the image quality for all data, in particular, for 3D elemental maps. We demonstrate the joint multi-channel TGV reconstruction on tomographic energy-dispersive X-ray spectroscopy (EDXS) and high-angle annular dark field (HAADF) data, but the reconstruction method is generally applicable to all types of signals used in electron tomography, as well as all other types of projection-based tomographies. |
doi_str_mv | 10.1039/c8nr09058k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2191012306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191012306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-ddbc0bf319c063daec22a88d26f4a56e299d957d1695743a472eb0b83534bdf73</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlYv_gBZ8CLCar42mxyl-IWlgtTzkk2ydWt2U5Ndof31prb24GVmXuaZl-EF4BzBGwSJuFW89VDAjH8egCGGFKaE5PhwPzM6ACchLCBkgjByDAYEckYZJEMwnblO2mRuWuOlrddGJ9_S17KrXZt4M-9tVOutrJxPmt52ddo4HY-MNarzcdG5xs29XH6sTsFRJW0wZ7s-Au8P97PxUzp5fXwe301SRTPepVqXCpYVQUJBRrQ0CmPJucasojJjBguhRZZrxGKlRNIcmxKWnGSElrrKyQhcbX2X3n31JnRFUwdlrJWtcX0oMBIIIkyi-whc_kMXrvdt_G5DUU5hZCN1vaWUdyF4UxVLXzfSrwoEi03KxZhP335Tfonwxc6yLxuj9-hfrOQHqm54Cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194840191</pqid></control><display><type>article</type><title>Total generalized variation regularization for multi-modal electron tomography</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Huber, Richard ; Haberfehlner, Georg ; Holler, Martin ; Kothleitner, Gerald ; Bredies, Kristian</creator><creatorcontrib>Huber, Richard ; Haberfehlner, Georg ; Holler, Martin ; Kothleitner, Gerald ; Bredies, Kristian</creatorcontrib><description>In multi-modal electron tomography, tilt series of several signals such as X-ray spectra, electron energy-loss spectra, annular dark-field, or bright-field data are acquired at the same time in a transmission electron microscope and subsequently reconstructed in three dimensions. However, the acquired data are often incomplete and suffer from noise, and generally each signal is reconstructed independently of all other signals, not taking advantage of correlation between different datasets. This severely limits both the resolution and validity of the reconstructed images. In this paper, we show how image quality in multi-modal electron tomography can be greatly improved by employing variational modeling and multi-channel regularization techniques. To achieve this aim, we employ a coupled Total Generalized Variation (TGV) regularization that exploits correlation between different channels. In contrast to other regularization methods, coupled TGV regularization allows to reconstruct both hard transitions and gradual changes inside each sample, and links different channels at the level of first and higher order derivatives. This favors similar interface positions for all reconstructions, thereby improving the image quality for all data, in particular, for 3D elemental maps. We demonstrate the joint multi-channel TGV reconstruction on tomographic energy-dispersive X-ray spectroscopy (EDXS) and high-angle annular dark field (HAADF) data, but the reconstruction method is generally applicable to all types of signals used in electron tomography, as well as all other types of projection-based tomographies.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr09058k</identifier><identifier>PMID: 30864603</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Channels ; Data acquisition ; Electron energy ; Energy dispersive X ray spectroscopy ; Image quality ; Image reconstruction ; Impact analysis ; Parameters ; Quantitative analysis ; Radon transformation ; Regularization ; Regularization methods ; Spectrum analysis ; Tomography ; X ray spectra</subject><ispartof>Nanoscale, 2019-03, Vol.11 (12), p.5617-5632</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-ddbc0bf319c063daec22a88d26f4a56e299d957d1695743a472eb0b83534bdf73</citedby><cites>FETCH-LOGICAL-c458t-ddbc0bf319c063daec22a88d26f4a56e299d957d1695743a472eb0b83534bdf73</cites><orcidid>0000-0003-4136-9384 ; 0000-0001-7140-043X ; 0000-0003-1743-6786 ; 0000-0002-2895-2375 ; 0000-0002-2116-7761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30864603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huber, Richard</creatorcontrib><creatorcontrib>Haberfehlner, Georg</creatorcontrib><creatorcontrib>Holler, Martin</creatorcontrib><creatorcontrib>Kothleitner, Gerald</creatorcontrib><creatorcontrib>Bredies, Kristian</creatorcontrib><title>Total generalized variation regularization for multi-modal electron tomography</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>In multi-modal electron tomography, tilt series of several signals such as X-ray spectra, electron energy-loss spectra, annular dark-field, or bright-field data are acquired at the same time in a transmission electron microscope and subsequently reconstructed in three dimensions. However, the acquired data are often incomplete and suffer from noise, and generally each signal is reconstructed independently of all other signals, not taking advantage of correlation between different datasets. This severely limits both the resolution and validity of the reconstructed images. In this paper, we show how image quality in multi-modal electron tomography can be greatly improved by employing variational modeling and multi-channel regularization techniques. To achieve this aim, we employ a coupled Total Generalized Variation (TGV) regularization that exploits correlation between different channels. In contrast to other regularization methods, coupled TGV regularization allows to reconstruct both hard transitions and gradual changes inside each sample, and links different channels at the level of first and higher order derivatives. This favors similar interface positions for all reconstructions, thereby improving the image quality for all data, in particular, for 3D elemental maps. We demonstrate the joint multi-channel TGV reconstruction on tomographic energy-dispersive X-ray spectroscopy (EDXS) and high-angle annular dark field (HAADF) data, but the reconstruction method is generally applicable to all types of signals used in electron tomography, as well as all other types of projection-based tomographies.</description><subject>Channels</subject><subject>Data acquisition</subject><subject>Electron energy</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Impact analysis</subject><subject>Parameters</subject><subject>Quantitative analysis</subject><subject>Radon transformation</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Spectrum analysis</subject><subject>Tomography</subject><subject>X ray spectra</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlYv_gBZ8CLCar42mxyl-IWlgtTzkk2ydWt2U5Ndof31prb24GVmXuaZl-EF4BzBGwSJuFW89VDAjH8egCGGFKaE5PhwPzM6ACchLCBkgjByDAYEckYZJEMwnblO2mRuWuOlrddGJ9_S17KrXZt4M-9tVOutrJxPmt52ddo4HY-MNarzcdG5xs29XH6sTsFRJW0wZ7s-Au8P97PxUzp5fXwe301SRTPepVqXCpYVQUJBRrQ0CmPJucasojJjBguhRZZrxGKlRNIcmxKWnGSElrrKyQhcbX2X3n31JnRFUwdlrJWtcX0oMBIIIkyi-whc_kMXrvdt_G5DUU5hZCN1vaWUdyF4UxVLXzfSrwoEi03KxZhP335Tfonwxc6yLxuj9-hfrOQHqm54Cg</recordid><startdate>20190321</startdate><enddate>20190321</enddate><creator>Huber, Richard</creator><creator>Haberfehlner, Georg</creator><creator>Holler, Martin</creator><creator>Kothleitner, Gerald</creator><creator>Bredies, Kristian</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4136-9384</orcidid><orcidid>https://orcid.org/0000-0001-7140-043X</orcidid><orcidid>https://orcid.org/0000-0003-1743-6786</orcidid><orcidid>https://orcid.org/0000-0002-2895-2375</orcidid><orcidid>https://orcid.org/0000-0002-2116-7761</orcidid></search><sort><creationdate>20190321</creationdate><title>Total generalized variation regularization for multi-modal electron tomography</title><author>Huber, Richard ; Haberfehlner, Georg ; Holler, Martin ; Kothleitner, Gerald ; Bredies, Kristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-ddbc0bf319c063daec22a88d26f4a56e299d957d1695743a472eb0b83534bdf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Channels</topic><topic>Data acquisition</topic><topic>Electron energy</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Impact analysis</topic><topic>Parameters</topic><topic>Quantitative analysis</topic><topic>Radon transformation</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Spectrum analysis</topic><topic>Tomography</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huber, Richard</creatorcontrib><creatorcontrib>Haberfehlner, Georg</creatorcontrib><creatorcontrib>Holler, Martin</creatorcontrib><creatorcontrib>Kothleitner, Gerald</creatorcontrib><creatorcontrib>Bredies, Kristian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huber, Richard</au><au>Haberfehlner, Georg</au><au>Holler, Martin</au><au>Kothleitner, Gerald</au><au>Bredies, Kristian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total generalized variation regularization for multi-modal electron tomography</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-03-21</date><risdate>2019</risdate><volume>11</volume><issue>12</issue><spage>5617</spage><epage>5632</epage><pages>5617-5632</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>In multi-modal electron tomography, tilt series of several signals such as X-ray spectra, electron energy-loss spectra, annular dark-field, or bright-field data are acquired at the same time in a transmission electron microscope and subsequently reconstructed in three dimensions. However, the acquired data are often incomplete and suffer from noise, and generally each signal is reconstructed independently of all other signals, not taking advantage of correlation between different datasets. This severely limits both the resolution and validity of the reconstructed images. In this paper, we show how image quality in multi-modal electron tomography can be greatly improved by employing variational modeling and multi-channel regularization techniques. To achieve this aim, we employ a coupled Total Generalized Variation (TGV) regularization that exploits correlation between different channels. In contrast to other regularization methods, coupled TGV regularization allows to reconstruct both hard transitions and gradual changes inside each sample, and links different channels at the level of first and higher order derivatives. This favors similar interface positions for all reconstructions, thereby improving the image quality for all data, in particular, for 3D elemental maps. We demonstrate the joint multi-channel TGV reconstruction on tomographic energy-dispersive X-ray spectroscopy (EDXS) and high-angle annular dark field (HAADF) data, but the reconstruction method is generally applicable to all types of signals used in electron tomography, as well as all other types of projection-based tomographies.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30864603</pmid><doi>10.1039/c8nr09058k</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4136-9384</orcidid><orcidid>https://orcid.org/0000-0001-7140-043X</orcidid><orcidid>https://orcid.org/0000-0003-1743-6786</orcidid><orcidid>https://orcid.org/0000-0002-2895-2375</orcidid><orcidid>https://orcid.org/0000-0002-2116-7761</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-03, Vol.11 (12), p.5617-5632 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2191012306 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Channels Data acquisition Electron energy Energy dispersive X ray spectroscopy Image quality Image reconstruction Impact analysis Parameters Quantitative analysis Radon transformation Regularization Regularization methods Spectrum analysis Tomography X ray spectra |
title | Total generalized variation regularization for multi-modal electron tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20generalized%20variation%20regularization%20for%20multi-modal%20electron%20tomography&rft.jtitle=Nanoscale&rft.au=Huber,%20Richard&rft.date=2019-03-21&rft.volume=11&rft.issue=12&rft.spage=5617&rft.epage=5632&rft.pages=5617-5632&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr09058k&rft_dat=%3Cproquest_cross%3E2191012306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194840191&rft_id=info:pmid/30864603&rfr_iscdi=true |