Predicting Virological Response to HIV Treatment Over Time: A Tool for Settings With Different Definitions of Virological Response

OBJECTIVE:Definitions of virological response vary from

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of acquired immune deficiency syndromes (1999) 2019-06, Vol.81 (2), p.207-215
Hauptverfasser: Revell, Andrew D, Wang, Dechao, Perez-Elias, Maria-Jesus, Wood, Robin, Tempelman, Hugo, Clotet, Bonaventura, Reiss, Peter, van Sighem, Ard I, Alvarez-Uria, Gerardo, Nelson, Mark, Montaner, Julio S G, Lane, H Clifford, Larder, Brendan A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 2
container_start_page 207
container_title Journal of acquired immune deficiency syndromes (1999)
container_volume 81
creator Revell, Andrew D
Wang, Dechao
Perez-Elias, Maria-Jesus
Wood, Robin
Tempelman, Hugo
Clotet, Bonaventura
Reiss, Peter
van Sighem, Ard I
Alvarez-Uria, Gerardo
Nelson, Mark
Montaner, Julio S G
Lane, H Clifford
Larder, Brendan A
description OBJECTIVE:Definitions of virological response vary from
doi_str_mv 10.1097/QAI.0000000000001989
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2191010766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239162492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3849-419e488ab252cdb1c5037c279ac8e823377075b2dee75c754b7f818ad6d754253</originalsourceid><addsrcrecordid>eNp9kV1vFCEUhonR2Fr9B8aQeOPNVmBgAO82rdpNmtSPtV4ShjnTpTLDFhgbb_3lstlqTGPk5kDynOdw8iL0nJJjSrR8_XG5OiZ_HaqVfoAOqeZ8IZXiD-tdMLHgtBEH6EnO15VpOdeP0UFDVCuoag_Rzw8Jeu-Kn67wpU8xxCvvbMCfIG_jlAGXiM9Wl3idwJYRpoIvvkPCaz_CG7zE6xgDHmLCn6HsHBl_9WWDT_0wQNrRpzD4yRdfXTgO_xzxFD0abMjw7K4eoS_v3q5PzhbnF-9XJ8vzhWsU13UPDVwp2zHBXN9RJ0gjHZPaOgWKNY2URIqO9QBSOCl4JwdFle3bvj6YaI7Qq713m-LNDLmY0WcHIdgJ4pwNo5oSSmTbVvTlPfQ6zmmqvzOMNZq2jGtWKb6nXIo5JxjMNvnRph-GErPLyNSMzP2MatuLO_ncjdD_afodSgXUHriNoUDK38J8C8lswIay-b_7Fye3nQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239162492</pqid></control><display><type>article</type><title>Predicting Virological Response to HIV Treatment Over Time: A Tool for Settings With Different Definitions of Virological Response</title><source>MEDLINE</source><source>Journals@Ovid LWW Legacy Archive</source><source>Free E- Journals</source><creator>Revell, Andrew D ; Wang, Dechao ; Perez-Elias, Maria-Jesus ; Wood, Robin ; Tempelman, Hugo ; Clotet, Bonaventura ; Reiss, Peter ; van Sighem, Ard I ; Alvarez-Uria, Gerardo ; Nelson, Mark ; Montaner, Julio S G ; Lane, H Clifford ; Larder, Brendan A</creator><creatorcontrib>Revell, Andrew D ; Wang, Dechao ; Perez-Elias, Maria-Jesus ; Wood, Robin ; Tempelman, Hugo ; Clotet, Bonaventura ; Reiss, Peter ; van Sighem, Ard I ; Alvarez-Uria, Gerardo ; Nelson, Mark ; Montaner, Julio S G ; Lane, H Clifford ; Larder, Brendan A ; on behalf of the RDI study group</creatorcontrib><description>OBJECTIVE:Definitions of virological response vary from &lt;50 up to 1000 copies of HIV-RNA/mL. Our previous models estimate the probability of HIV drug combinations reducing the viral load to &lt;50 copies/mL, with no indication of whether higher thresholds of response may be achieved. Here, we describe the development of models that predict absolute viral load over time. METHODS:Two sets of random forest models were developed using 50,270 treatment change episodes from more than 20 countries. The models estimated viral load at different time points following the introduction of a new regimen from variables including baseline viral load, CD4 count, and treatment history. One set also used genotypes in their predictions. Independent data sets were used for evaluation. RESULTS:Both models achieved highly significant correlations between predicted and actual viral load changes (r = 0.67–0.68, mean absolute error of 0.73–0.74 log10 copies/mL). The models produced curves of virological response over time. Using failure definitions of &lt;100, 400, or 1000 copies/mL, but not 50 copies/mL, both models were able to identify alternative regimens they predicted to be effective for the majority of cases where the new regimen prescribed in the clinic failed. CONCLUSIONS:These models could be useful for selecting the optimum combination therapy for patients requiring a change in therapy in settings using any definition of virological response. They also give an idea of the likely response curve over time. Given that genotypes are not required, these models could be a useful addition to the HIV-TRePS system for those in resource-limited settings.</description><identifier>ISSN: 1525-4135</identifier><identifier>EISSN: 1944-7884</identifier><identifier>DOI: 10.1097/QAI.0000000000001989</identifier><identifier>PMID: 30865186</identifier><language>eng</language><publisher>United States: Copyright Wolters Kluwer Health, Inc. All rights reserved</publisher><subject>Adult ; AIDS/HIV ; Anti-Retroviral Agents - pharmacology ; Anti-Retroviral Agents - therapeutic use ; Antiretroviral drugs ; CD4 antigen ; CD4 Lymphocyte Count ; Drug Therapy, Combination ; Female ; Forest management ; Genotype ; Genotypes ; HIV ; HIV - drug effects ; HIV Infections - drug therapy ; HIV Infections - virology ; Human immunodeficiency virus ; Humans ; Male ; Models, Statistical ; Predictions ; Ribonucleic acid ; RNA ; RNA, Viral - blood ; Therapy ; Viral Load - drug effects</subject><ispartof>Journal of acquired immune deficiency syndromes (1999), 2019-06, Vol.81 (2), p.207-215</ispartof><rights>Copyright © 2019 Wolters Kluwer Health, Inc. All rights reserved.</rights><rights>Copyright Lippincott Williams &amp; Wilkins Ovid Technologies Jun 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3849-419e488ab252cdb1c5037c279ac8e823377075b2dee75c754b7f818ad6d754253</citedby><cites>FETCH-LOGICAL-c3849-419e488ab252cdb1c5037c279ac8e823377075b2dee75c754b7f818ad6d754253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30865186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Revell, Andrew D</creatorcontrib><creatorcontrib>Wang, Dechao</creatorcontrib><creatorcontrib>Perez-Elias, Maria-Jesus</creatorcontrib><creatorcontrib>Wood, Robin</creatorcontrib><creatorcontrib>Tempelman, Hugo</creatorcontrib><creatorcontrib>Clotet, Bonaventura</creatorcontrib><creatorcontrib>Reiss, Peter</creatorcontrib><creatorcontrib>van Sighem, Ard I</creatorcontrib><creatorcontrib>Alvarez-Uria, Gerardo</creatorcontrib><creatorcontrib>Nelson, Mark</creatorcontrib><creatorcontrib>Montaner, Julio S G</creatorcontrib><creatorcontrib>Lane, H Clifford</creatorcontrib><creatorcontrib>Larder, Brendan A</creatorcontrib><creatorcontrib>on behalf of the RDI study group</creatorcontrib><title>Predicting Virological Response to HIV Treatment Over Time: A Tool for Settings With Different Definitions of Virological Response</title><title>Journal of acquired immune deficiency syndromes (1999)</title><addtitle>J Acquir Immune Defic Syndr</addtitle><description>OBJECTIVE:Definitions of virological response vary from &lt;50 up to 1000 copies of HIV-RNA/mL. Our previous models estimate the probability of HIV drug combinations reducing the viral load to &lt;50 copies/mL, with no indication of whether higher thresholds of response may be achieved. Here, we describe the development of models that predict absolute viral load over time. METHODS:Two sets of random forest models were developed using 50,270 treatment change episodes from more than 20 countries. The models estimated viral load at different time points following the introduction of a new regimen from variables including baseline viral load, CD4 count, and treatment history. One set also used genotypes in their predictions. Independent data sets were used for evaluation. RESULTS:Both models achieved highly significant correlations between predicted and actual viral load changes (r = 0.67–0.68, mean absolute error of 0.73–0.74 log10 copies/mL). The models produced curves of virological response over time. Using failure definitions of &lt;100, 400, or 1000 copies/mL, but not 50 copies/mL, both models were able to identify alternative regimens they predicted to be effective for the majority of cases where the new regimen prescribed in the clinic failed. CONCLUSIONS:These models could be useful for selecting the optimum combination therapy for patients requiring a change in therapy in settings using any definition of virological response. They also give an idea of the likely response curve over time. Given that genotypes are not required, these models could be a useful addition to the HIV-TRePS system for those in resource-limited settings.</description><subject>Adult</subject><subject>AIDS/HIV</subject><subject>Anti-Retroviral Agents - pharmacology</subject><subject>Anti-Retroviral Agents - therapeutic use</subject><subject>Antiretroviral drugs</subject><subject>CD4 antigen</subject><subject>CD4 Lymphocyte Count</subject><subject>Drug Therapy, Combination</subject><subject>Female</subject><subject>Forest management</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>HIV</subject><subject>HIV - drug effects</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - virology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Male</subject><subject>Models, Statistical</subject><subject>Predictions</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Viral - blood</subject><subject>Therapy</subject><subject>Viral Load - drug effects</subject><issn>1525-4135</issn><issn>1944-7884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV1vFCEUhonR2Fr9B8aQeOPNVmBgAO82rdpNmtSPtV4ShjnTpTLDFhgbb_3lstlqTGPk5kDynOdw8iL0nJJjSrR8_XG5OiZ_HaqVfoAOqeZ8IZXiD-tdMLHgtBEH6EnO15VpOdeP0UFDVCuoag_Rzw8Jeu-Kn67wpU8xxCvvbMCfIG_jlAGXiM9Wl3idwJYRpoIvvkPCaz_CG7zE6xgDHmLCn6HsHBl_9WWDT_0wQNrRpzD4yRdfXTgO_xzxFD0abMjw7K4eoS_v3q5PzhbnF-9XJ8vzhWsU13UPDVwp2zHBXN9RJ0gjHZPaOgWKNY2URIqO9QBSOCl4JwdFle3bvj6YaI7Qq713m-LNDLmY0WcHIdgJ4pwNo5oSSmTbVvTlPfQ6zmmqvzOMNZq2jGtWKb6nXIo5JxjMNvnRph-GErPLyNSMzP2MatuLO_ncjdD_afodSgXUHriNoUDK38J8C8lswIay-b_7Fye3nQY</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Revell, Andrew D</creator><creator>Wang, Dechao</creator><creator>Perez-Elias, Maria-Jesus</creator><creator>Wood, Robin</creator><creator>Tempelman, Hugo</creator><creator>Clotet, Bonaventura</creator><creator>Reiss, Peter</creator><creator>van Sighem, Ard I</creator><creator>Alvarez-Uria, Gerardo</creator><creator>Nelson, Mark</creator><creator>Montaner, Julio S G</creator><creator>Lane, H Clifford</creator><creator>Larder, Brendan A</creator><general>Copyright Wolters Kluwer Health, Inc. All rights reserved</general><general>Lippincott Williams &amp; Wilkins Ovid Technologies</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7T5</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20190601</creationdate><title>Predicting Virological Response to HIV Treatment Over Time: A Tool for Settings With Different Definitions of Virological Response</title><author>Revell, Andrew D ; Wang, Dechao ; Perez-Elias, Maria-Jesus ; Wood, Robin ; Tempelman, Hugo ; Clotet, Bonaventura ; Reiss, Peter ; van Sighem, Ard I ; Alvarez-Uria, Gerardo ; Nelson, Mark ; Montaner, Julio S G ; Lane, H Clifford ; Larder, Brendan A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3849-419e488ab252cdb1c5037c279ac8e823377075b2dee75c754b7f818ad6d754253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>AIDS/HIV</topic><topic>Anti-Retroviral Agents - pharmacology</topic><topic>Anti-Retroviral Agents - therapeutic use</topic><topic>Antiretroviral drugs</topic><topic>CD4 antigen</topic><topic>CD4 Lymphocyte Count</topic><topic>Drug Therapy, Combination</topic><topic>Female</topic><topic>Forest management</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>HIV</topic><topic>HIV - drug effects</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - virology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Male</topic><topic>Models, Statistical</topic><topic>Predictions</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Viral - blood</topic><topic>Therapy</topic><topic>Viral Load - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Revell, Andrew D</creatorcontrib><creatorcontrib>Wang, Dechao</creatorcontrib><creatorcontrib>Perez-Elias, Maria-Jesus</creatorcontrib><creatorcontrib>Wood, Robin</creatorcontrib><creatorcontrib>Tempelman, Hugo</creatorcontrib><creatorcontrib>Clotet, Bonaventura</creatorcontrib><creatorcontrib>Reiss, Peter</creatorcontrib><creatorcontrib>van Sighem, Ard I</creatorcontrib><creatorcontrib>Alvarez-Uria, Gerardo</creatorcontrib><creatorcontrib>Nelson, Mark</creatorcontrib><creatorcontrib>Montaner, Julio S G</creatorcontrib><creatorcontrib>Lane, H Clifford</creatorcontrib><creatorcontrib>Larder, Brendan A</creatorcontrib><creatorcontrib>on behalf of the RDI study group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of acquired immune deficiency syndromes (1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Revell, Andrew D</au><au>Wang, Dechao</au><au>Perez-Elias, Maria-Jesus</au><au>Wood, Robin</au><au>Tempelman, Hugo</au><au>Clotet, Bonaventura</au><au>Reiss, Peter</au><au>van Sighem, Ard I</au><au>Alvarez-Uria, Gerardo</au><au>Nelson, Mark</au><au>Montaner, Julio S G</au><au>Lane, H Clifford</au><au>Larder, Brendan A</au><aucorp>on behalf of the RDI study group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Virological Response to HIV Treatment Over Time: A Tool for Settings With Different Definitions of Virological Response</atitle><jtitle>Journal of acquired immune deficiency syndromes (1999)</jtitle><addtitle>J Acquir Immune Defic Syndr</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>81</volume><issue>2</issue><spage>207</spage><epage>215</epage><pages>207-215</pages><issn>1525-4135</issn><eissn>1944-7884</eissn><abstract>OBJECTIVE:Definitions of virological response vary from &lt;50 up to 1000 copies of HIV-RNA/mL. Our previous models estimate the probability of HIV drug combinations reducing the viral load to &lt;50 copies/mL, with no indication of whether higher thresholds of response may be achieved. Here, we describe the development of models that predict absolute viral load over time. METHODS:Two sets of random forest models were developed using 50,270 treatment change episodes from more than 20 countries. The models estimated viral load at different time points following the introduction of a new regimen from variables including baseline viral load, CD4 count, and treatment history. One set also used genotypes in their predictions. Independent data sets were used for evaluation. RESULTS:Both models achieved highly significant correlations between predicted and actual viral load changes (r = 0.67–0.68, mean absolute error of 0.73–0.74 log10 copies/mL). The models produced curves of virological response over time. Using failure definitions of &lt;100, 400, or 1000 copies/mL, but not 50 copies/mL, both models were able to identify alternative regimens they predicted to be effective for the majority of cases where the new regimen prescribed in the clinic failed. CONCLUSIONS:These models could be useful for selecting the optimum combination therapy for patients requiring a change in therapy in settings using any definition of virological response. They also give an idea of the likely response curve over time. Given that genotypes are not required, these models could be a useful addition to the HIV-TRePS system for those in resource-limited settings.</abstract><cop>United States</cop><pub>Copyright Wolters Kluwer Health, Inc. All rights reserved</pub><pmid>30865186</pmid><doi>10.1097/QAI.0000000000001989</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-4135
ispartof Journal of acquired immune deficiency syndromes (1999), 2019-06, Vol.81 (2), p.207-215
issn 1525-4135
1944-7884
language eng
recordid cdi_proquest_miscellaneous_2191010766
source MEDLINE; Journals@Ovid LWW Legacy Archive; Free E- Journals
subjects Adult
AIDS/HIV
Anti-Retroviral Agents - pharmacology
Anti-Retroviral Agents - therapeutic use
Antiretroviral drugs
CD4 antigen
CD4 Lymphocyte Count
Drug Therapy, Combination
Female
Forest management
Genotype
Genotypes
HIV
HIV - drug effects
HIV Infections - drug therapy
HIV Infections - virology
Human immunodeficiency virus
Humans
Male
Models, Statistical
Predictions
Ribonucleic acid
RNA
RNA, Viral - blood
Therapy
Viral Load - drug effects
title Predicting Virological Response to HIV Treatment Over Time: A Tool for Settings With Different Definitions of Virological Response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Virological%20Response%20to%20HIV%20Treatment%20Over%20Time:%20A%20Tool%20for%20Settings%20With%20Different%20Definitions%20of%20Virological%20Response&rft.jtitle=Journal%20of%20acquired%20immune%20deficiency%20syndromes%20(1999)&rft.au=Revell,%20Andrew%20D&rft.aucorp=on%20behalf%20of%20the%20RDI%20study%20group&rft.date=2019-06-01&rft.volume=81&rft.issue=2&rft.spage=207&rft.epage=215&rft.pages=207-215&rft.issn=1525-4135&rft.eissn=1944-7884&rft_id=info:doi/10.1097/QAI.0000000000001989&rft_dat=%3Cproquest_cross%3E2239162492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239162492&rft_id=info:pmid/30865186&rfr_iscdi=true