Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte Neoplasia Progression in Zebrafish

Alterations in lipid metabolism in cancer cells impact cell structure, signaling, and energy metabolism, making lipid metabolism a potential diagnostic marker and therapeutic target. In this study, we combined PET, desorption electrospray ionization-mass spectrometry (DESI-MS), nonimaging MS, and tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2019-05, Vol.79 (9), p.2136-2151
Hauptverfasser: Henderson, Fiona, Johnston, Hannah R, Badrock, Andrew P, Jones, Emrys A, Forster, Duncan, Nagaraju, Raghavendar T, Evangelou, Christos, Kamarashev, Jivko, Green, Michael, Fairclough, Michael, Ramirez, Irene Barinaga-Rementeria, He, Shuning, Snaar-Jagalska, B Ewa, Hollywood, Katherine, Dunn, Warwick B, Spaink, Herman P, Smith, Michael P, Lorigan, Paul, Claude, Emmanuelle, Williams, Kaye J, McMahon, Adam W, Hurlstone, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2151
container_issue 9
container_start_page 2136
container_title Cancer research (Chicago, Ill.)
container_volume 79
creator Henderson, Fiona
Johnston, Hannah R
Badrock, Andrew P
Jones, Emrys A
Forster, Duncan
Nagaraju, Raghavendar T
Evangelou, Christos
Kamarashev, Jivko
Green, Michael
Fairclough, Michael
Ramirez, Irene Barinaga-Rementeria
He, Shuning
Snaar-Jagalska, B Ewa
Hollywood, Katherine
Dunn, Warwick B
Spaink, Herman P
Smith, Michael P
Lorigan, Paul
Claude, Emmanuelle
Williams, Kaye J
McMahon, Adam W
Hurlstone, Adam
description Alterations in lipid metabolism in cancer cells impact cell structure, signaling, and energy metabolism, making lipid metabolism a potential diagnostic marker and therapeutic target. In this study, we combined PET, desorption electrospray ionization-mass spectrometry (DESI-MS), nonimaging MS, and transcriptomic analyses to interrogate changes in lipid metabolism in a transgenic zebrafish model of oncogenic RAS-driven melanocyte neoplasia progression. Exogenous fatty acid uptake was detected in melanoma tumor nodules by PET using the palmitic acid surrogate tracer 14(R,S)-18F-fluoro-6-thia-heptadecanoic acid ([18F]-FTHA), consistent with upregulation of genes associated with fatty acid uptake found through microarray analysis. DESI-MS imaging revealed that FTHA uptake in tumors was heterogeneous. Transcriptome and lipidome analyses further highlighted dysregulation of glycerophospholipid pathways in melanoma tumor nodules, including increased abundance of phosphatidyl ethanolamine and phosphatidyl choline species, corroborated by DESI-MS, which again revealed heterogeneous phospholipid composition in tumors. Overexpression of the gene encoding lipoprotein lipase (LPL), which was upregulated in zebrafish melanocyte tumor nodules and expressed in the majority of human melanomas, accelerated progression of oncogenic RAS-driven melanocyte neoplasia in zebrafish. Depletion or antagonism of LPL suppressed human melanoma cell growth; this required simultaneous fatty acid synthase (FASN) inhibition when FASN expression was also elevated. Collectively, our findings implicate fatty acid acquisition as a possible therapeutic target in melanoma, and the methods we developed for monitoring fatty acid uptake have potential for diagnosis, patient stratification, and monitoring pharmacologic response. SIGNIFICANCE: These findings demonstrate the translational potential of monitoring fatty acid uptake and identify lipoprotein lipase as a potential therapeutic target in melanoma.
doi_str_mv 10.1158/0008-5472.CAN-18-2409
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2191009686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191009686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-bf55ae9a919494a7daf2fd95ddc50f4101d19bd0646049828b23e6376dac61003</originalsourceid><addsrcrecordid>eNo9kEFPHCEUx0mjqVvtR9Bw9DIWZoCB42ajtolVE-ulF_IGmF3MDIwwazLfvmy0HsiDl9__PfJD6JySK0q5_EEIkRVnbX21Wd9XVFY1I-oLWlHeyKpljB-h1Sdzgr7l_FKenBL-FZ00RIq6pWKFluuwg2CcxTcwzwteG2_xk4E3F7Y-bDEEi2-HxbgUp13M5Qx-KshvN0NX7nksERPHCcJSmgOEaJbZ4XsXpwGyB_yY4ja5nH0M2Af813UJep93Z-i4hyG77x_1FD3fXP_Z_KzuHm5_bdZ3lWm4mKuu5xycAkUVUwxaC33dW8WtNZz0jBJqqeosEUwQpmQtu7pxommFBSMoIc0punyfO6X4und51qPPxg3lqy7us66pKpgSUhSUv6MmxZyT6_WU_Ahp0ZTog3V9MKoPRnWxrqnUB-sld_GxYt-Nzn6m_mtu_gH-3H-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191009686</pqid></control><display><type>article</type><title>Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte Neoplasia Progression in Zebrafish</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Henderson, Fiona ; Johnston, Hannah R ; Badrock, Andrew P ; Jones, Emrys A ; Forster, Duncan ; Nagaraju, Raghavendar T ; Evangelou, Christos ; Kamarashev, Jivko ; Green, Michael ; Fairclough, Michael ; Ramirez, Irene Barinaga-Rementeria ; He, Shuning ; Snaar-Jagalska, B Ewa ; Hollywood, Katherine ; Dunn, Warwick B ; Spaink, Herman P ; Smith, Michael P ; Lorigan, Paul ; Claude, Emmanuelle ; Williams, Kaye J ; McMahon, Adam W ; Hurlstone, Adam</creator><creatorcontrib>Henderson, Fiona ; Johnston, Hannah R ; Badrock, Andrew P ; Jones, Emrys A ; Forster, Duncan ; Nagaraju, Raghavendar T ; Evangelou, Christos ; Kamarashev, Jivko ; Green, Michael ; Fairclough, Michael ; Ramirez, Irene Barinaga-Rementeria ; He, Shuning ; Snaar-Jagalska, B Ewa ; Hollywood, Katherine ; Dunn, Warwick B ; Spaink, Herman P ; Smith, Michael P ; Lorigan, Paul ; Claude, Emmanuelle ; Williams, Kaye J ; McMahon, Adam W ; Hurlstone, Adam</creatorcontrib><description>Alterations in lipid metabolism in cancer cells impact cell structure, signaling, and energy metabolism, making lipid metabolism a potential diagnostic marker and therapeutic target. In this study, we combined PET, desorption electrospray ionization-mass spectrometry (DESI-MS), nonimaging MS, and transcriptomic analyses to interrogate changes in lipid metabolism in a transgenic zebrafish model of oncogenic RAS-driven melanocyte neoplasia progression. Exogenous fatty acid uptake was detected in melanoma tumor nodules by PET using the palmitic acid surrogate tracer 14(R,S)-18F-fluoro-6-thia-heptadecanoic acid ([18F]-FTHA), consistent with upregulation of genes associated with fatty acid uptake found through microarray analysis. DESI-MS imaging revealed that FTHA uptake in tumors was heterogeneous. Transcriptome and lipidome analyses further highlighted dysregulation of glycerophospholipid pathways in melanoma tumor nodules, including increased abundance of phosphatidyl ethanolamine and phosphatidyl choline species, corroborated by DESI-MS, which again revealed heterogeneous phospholipid composition in tumors. Overexpression of the gene encoding lipoprotein lipase (LPL), which was upregulated in zebrafish melanocyte tumor nodules and expressed in the majority of human melanomas, accelerated progression of oncogenic RAS-driven melanocyte neoplasia in zebrafish. Depletion or antagonism of LPL suppressed human melanoma cell growth; this required simultaneous fatty acid synthase (FASN) inhibition when FASN expression was also elevated. Collectively, our findings implicate fatty acid acquisition as a possible therapeutic target in melanoma, and the methods we developed for monitoring fatty acid uptake have potential for diagnosis, patient stratification, and monitoring pharmacologic response. SIGNIFICANCE: These findings demonstrate the translational potential of monitoring fatty acid uptake and identify lipoprotein lipase as a potential therapeutic target in melanoma.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-18-2409</identifier><identifier>PMID: 30862716</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Energy Metabolism ; Fatty Acid Synthases - genetics ; Fatty Acid Synthases - metabolism ; Fatty Acids - metabolism ; Glycerophospholipids - metabolism ; Humans ; Lipoprotein Lipase - genetics ; Lipoprotein Lipase - metabolism ; Melanocytes - metabolism ; Melanocytes - pathology ; Melanoma - genetics ; Melanoma - metabolism ; Melanoma - pathology ; Metabolomics ; Microphthalmia-Associated Transcription Factor - genetics ; ras Proteins - genetics ; ras Proteins - metabolism ; Transcriptome ; Tumor Cells, Cultured ; Zebrafish - genetics ; Zebrafish - metabolism ; Zebrafish Proteins - genetics</subject><ispartof>Cancer research (Chicago, Ill.), 2019-05, Vol.79 (9), p.2136-2151</ispartof><rights>2019 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-bf55ae9a919494a7daf2fd95ddc50f4101d19bd0646049828b23e6376dac61003</citedby><cites>FETCH-LOGICAL-c356t-bf55ae9a919494a7daf2fd95ddc50f4101d19bd0646049828b23e6376dac61003</cites><orcidid>0000-0001-5260-9457 ; 0000-0002-6891-5181 ; 0000-0002-1618-9448 ; 0000-0002-7028-047X ; 0000-0002-5980-7840 ; 0000-0002-6130-2008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3357,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30862716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henderson, Fiona</creatorcontrib><creatorcontrib>Johnston, Hannah R</creatorcontrib><creatorcontrib>Badrock, Andrew P</creatorcontrib><creatorcontrib>Jones, Emrys A</creatorcontrib><creatorcontrib>Forster, Duncan</creatorcontrib><creatorcontrib>Nagaraju, Raghavendar T</creatorcontrib><creatorcontrib>Evangelou, Christos</creatorcontrib><creatorcontrib>Kamarashev, Jivko</creatorcontrib><creatorcontrib>Green, Michael</creatorcontrib><creatorcontrib>Fairclough, Michael</creatorcontrib><creatorcontrib>Ramirez, Irene Barinaga-Rementeria</creatorcontrib><creatorcontrib>He, Shuning</creatorcontrib><creatorcontrib>Snaar-Jagalska, B Ewa</creatorcontrib><creatorcontrib>Hollywood, Katherine</creatorcontrib><creatorcontrib>Dunn, Warwick B</creatorcontrib><creatorcontrib>Spaink, Herman P</creatorcontrib><creatorcontrib>Smith, Michael P</creatorcontrib><creatorcontrib>Lorigan, Paul</creatorcontrib><creatorcontrib>Claude, Emmanuelle</creatorcontrib><creatorcontrib>Williams, Kaye J</creatorcontrib><creatorcontrib>McMahon, Adam W</creatorcontrib><creatorcontrib>Hurlstone, Adam</creatorcontrib><title>Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte Neoplasia Progression in Zebrafish</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Alterations in lipid metabolism in cancer cells impact cell structure, signaling, and energy metabolism, making lipid metabolism a potential diagnostic marker and therapeutic target. In this study, we combined PET, desorption electrospray ionization-mass spectrometry (DESI-MS), nonimaging MS, and transcriptomic analyses to interrogate changes in lipid metabolism in a transgenic zebrafish model of oncogenic RAS-driven melanocyte neoplasia progression. Exogenous fatty acid uptake was detected in melanoma tumor nodules by PET using the palmitic acid surrogate tracer 14(R,S)-18F-fluoro-6-thia-heptadecanoic acid ([18F]-FTHA), consistent with upregulation of genes associated with fatty acid uptake found through microarray analysis. DESI-MS imaging revealed that FTHA uptake in tumors was heterogeneous. Transcriptome and lipidome analyses further highlighted dysregulation of glycerophospholipid pathways in melanoma tumor nodules, including increased abundance of phosphatidyl ethanolamine and phosphatidyl choline species, corroborated by DESI-MS, which again revealed heterogeneous phospholipid composition in tumors. Overexpression of the gene encoding lipoprotein lipase (LPL), which was upregulated in zebrafish melanocyte tumor nodules and expressed in the majority of human melanomas, accelerated progression of oncogenic RAS-driven melanocyte neoplasia in zebrafish. Depletion or antagonism of LPL suppressed human melanoma cell growth; this required simultaneous fatty acid synthase (FASN) inhibition when FASN expression was also elevated. Collectively, our findings implicate fatty acid acquisition as a possible therapeutic target in melanoma, and the methods we developed for monitoring fatty acid uptake have potential for diagnosis, patient stratification, and monitoring pharmacologic response. SIGNIFICANCE: These findings demonstrate the translational potential of monitoring fatty acid uptake and identify lipoprotein lipase as a potential therapeutic target in melanoma.</description><subject>Animals</subject><subject>Energy Metabolism</subject><subject>Fatty Acid Synthases - genetics</subject><subject>Fatty Acid Synthases - metabolism</subject><subject>Fatty Acids - metabolism</subject><subject>Glycerophospholipids - metabolism</subject><subject>Humans</subject><subject>Lipoprotein Lipase - genetics</subject><subject>Lipoprotein Lipase - metabolism</subject><subject>Melanocytes - metabolism</subject><subject>Melanocytes - pathology</subject><subject>Melanoma - genetics</subject><subject>Melanoma - metabolism</subject><subject>Melanoma - pathology</subject><subject>Metabolomics</subject><subject>Microphthalmia-Associated Transcription Factor - genetics</subject><subject>ras Proteins - genetics</subject><subject>ras Proteins - metabolism</subject><subject>Transcriptome</subject><subject>Tumor Cells, Cultured</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - metabolism</subject><subject>Zebrafish Proteins - genetics</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEFPHCEUx0mjqVvtR9Bw9DIWZoCB42ajtolVE-ulF_IGmF3MDIwwazLfvmy0HsiDl9__PfJD6JySK0q5_EEIkRVnbX21Wd9XVFY1I-oLWlHeyKpljB-h1Sdzgr7l_FKenBL-FZ00RIq6pWKFluuwg2CcxTcwzwteG2_xk4E3F7Y-bDEEi2-HxbgUp13M5Qx-KshvN0NX7nksERPHCcJSmgOEaJbZ4XsXpwGyB_yY4ja5nH0M2Af813UJep93Z-i4hyG77x_1FD3fXP_Z_KzuHm5_bdZ3lWm4mKuu5xycAkUVUwxaC33dW8WtNZz0jBJqqeosEUwQpmQtu7pxommFBSMoIc0punyfO6X4und51qPPxg3lqy7us66pKpgSUhSUv6MmxZyT6_WU_Ahp0ZTog3V9MKoPRnWxrqnUB-sld_GxYt-Nzn6m_mtu_gH-3H-I</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Henderson, Fiona</creator><creator>Johnston, Hannah R</creator><creator>Badrock, Andrew P</creator><creator>Jones, Emrys A</creator><creator>Forster, Duncan</creator><creator>Nagaraju, Raghavendar T</creator><creator>Evangelou, Christos</creator><creator>Kamarashev, Jivko</creator><creator>Green, Michael</creator><creator>Fairclough, Michael</creator><creator>Ramirez, Irene Barinaga-Rementeria</creator><creator>He, Shuning</creator><creator>Snaar-Jagalska, B Ewa</creator><creator>Hollywood, Katherine</creator><creator>Dunn, Warwick B</creator><creator>Spaink, Herman P</creator><creator>Smith, Michael P</creator><creator>Lorigan, Paul</creator><creator>Claude, Emmanuelle</creator><creator>Williams, Kaye J</creator><creator>McMahon, Adam W</creator><creator>Hurlstone, Adam</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5260-9457</orcidid><orcidid>https://orcid.org/0000-0002-6891-5181</orcidid><orcidid>https://orcid.org/0000-0002-1618-9448</orcidid><orcidid>https://orcid.org/0000-0002-7028-047X</orcidid><orcidid>https://orcid.org/0000-0002-5980-7840</orcidid><orcidid>https://orcid.org/0000-0002-6130-2008</orcidid></search><sort><creationdate>20190501</creationdate><title>Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte Neoplasia Progression in Zebrafish</title><author>Henderson, Fiona ; Johnston, Hannah R ; Badrock, Andrew P ; Jones, Emrys A ; Forster, Duncan ; Nagaraju, Raghavendar T ; Evangelou, Christos ; Kamarashev, Jivko ; Green, Michael ; Fairclough, Michael ; Ramirez, Irene Barinaga-Rementeria ; He, Shuning ; Snaar-Jagalska, B Ewa ; Hollywood, Katherine ; Dunn, Warwick B ; Spaink, Herman P ; Smith, Michael P ; Lorigan, Paul ; Claude, Emmanuelle ; Williams, Kaye J ; McMahon, Adam W ; Hurlstone, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-bf55ae9a919494a7daf2fd95ddc50f4101d19bd0646049828b23e6376dac61003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Energy Metabolism</topic><topic>Fatty Acid Synthases - genetics</topic><topic>Fatty Acid Synthases - metabolism</topic><topic>Fatty Acids - metabolism</topic><topic>Glycerophospholipids - metabolism</topic><topic>Humans</topic><topic>Lipoprotein Lipase - genetics</topic><topic>Lipoprotein Lipase - metabolism</topic><topic>Melanocytes - metabolism</topic><topic>Melanocytes - pathology</topic><topic>Melanoma - genetics</topic><topic>Melanoma - metabolism</topic><topic>Melanoma - pathology</topic><topic>Metabolomics</topic><topic>Microphthalmia-Associated Transcription Factor - genetics</topic><topic>ras Proteins - genetics</topic><topic>ras Proteins - metabolism</topic><topic>Transcriptome</topic><topic>Tumor Cells, Cultured</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - metabolism</topic><topic>Zebrafish Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henderson, Fiona</creatorcontrib><creatorcontrib>Johnston, Hannah R</creatorcontrib><creatorcontrib>Badrock, Andrew P</creatorcontrib><creatorcontrib>Jones, Emrys A</creatorcontrib><creatorcontrib>Forster, Duncan</creatorcontrib><creatorcontrib>Nagaraju, Raghavendar T</creatorcontrib><creatorcontrib>Evangelou, Christos</creatorcontrib><creatorcontrib>Kamarashev, Jivko</creatorcontrib><creatorcontrib>Green, Michael</creatorcontrib><creatorcontrib>Fairclough, Michael</creatorcontrib><creatorcontrib>Ramirez, Irene Barinaga-Rementeria</creatorcontrib><creatorcontrib>He, Shuning</creatorcontrib><creatorcontrib>Snaar-Jagalska, B Ewa</creatorcontrib><creatorcontrib>Hollywood, Katherine</creatorcontrib><creatorcontrib>Dunn, Warwick B</creatorcontrib><creatorcontrib>Spaink, Herman P</creatorcontrib><creatorcontrib>Smith, Michael P</creatorcontrib><creatorcontrib>Lorigan, Paul</creatorcontrib><creatorcontrib>Claude, Emmanuelle</creatorcontrib><creatorcontrib>Williams, Kaye J</creatorcontrib><creatorcontrib>McMahon, Adam W</creatorcontrib><creatorcontrib>Hurlstone, Adam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henderson, Fiona</au><au>Johnston, Hannah R</au><au>Badrock, Andrew P</au><au>Jones, Emrys A</au><au>Forster, Duncan</au><au>Nagaraju, Raghavendar T</au><au>Evangelou, Christos</au><au>Kamarashev, Jivko</au><au>Green, Michael</au><au>Fairclough, Michael</au><au>Ramirez, Irene Barinaga-Rementeria</au><au>He, Shuning</au><au>Snaar-Jagalska, B Ewa</au><au>Hollywood, Katherine</au><au>Dunn, Warwick B</au><au>Spaink, Herman P</au><au>Smith, Michael P</au><au>Lorigan, Paul</au><au>Claude, Emmanuelle</au><au>Williams, Kaye J</au><au>McMahon, Adam W</au><au>Hurlstone, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte Neoplasia Progression in Zebrafish</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>79</volume><issue>9</issue><spage>2136</spage><epage>2151</epage><pages>2136-2151</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Alterations in lipid metabolism in cancer cells impact cell structure, signaling, and energy metabolism, making lipid metabolism a potential diagnostic marker and therapeutic target. In this study, we combined PET, desorption electrospray ionization-mass spectrometry (DESI-MS), nonimaging MS, and transcriptomic analyses to interrogate changes in lipid metabolism in a transgenic zebrafish model of oncogenic RAS-driven melanocyte neoplasia progression. Exogenous fatty acid uptake was detected in melanoma tumor nodules by PET using the palmitic acid surrogate tracer 14(R,S)-18F-fluoro-6-thia-heptadecanoic acid ([18F]-FTHA), consistent with upregulation of genes associated with fatty acid uptake found through microarray analysis. DESI-MS imaging revealed that FTHA uptake in tumors was heterogeneous. Transcriptome and lipidome analyses further highlighted dysregulation of glycerophospholipid pathways in melanoma tumor nodules, including increased abundance of phosphatidyl ethanolamine and phosphatidyl choline species, corroborated by DESI-MS, which again revealed heterogeneous phospholipid composition in tumors. Overexpression of the gene encoding lipoprotein lipase (LPL), which was upregulated in zebrafish melanocyte tumor nodules and expressed in the majority of human melanomas, accelerated progression of oncogenic RAS-driven melanocyte neoplasia in zebrafish. Depletion or antagonism of LPL suppressed human melanoma cell growth; this required simultaneous fatty acid synthase (FASN) inhibition when FASN expression was also elevated. Collectively, our findings implicate fatty acid acquisition as a possible therapeutic target in melanoma, and the methods we developed for monitoring fatty acid uptake have potential for diagnosis, patient stratification, and monitoring pharmacologic response. SIGNIFICANCE: These findings demonstrate the translational potential of monitoring fatty acid uptake and identify lipoprotein lipase as a potential therapeutic target in melanoma.</abstract><cop>United States</cop><pmid>30862716</pmid><doi>10.1158/0008-5472.CAN-18-2409</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5260-9457</orcidid><orcidid>https://orcid.org/0000-0002-6891-5181</orcidid><orcidid>https://orcid.org/0000-0002-1618-9448</orcidid><orcidid>https://orcid.org/0000-0002-7028-047X</orcidid><orcidid>https://orcid.org/0000-0002-5980-7840</orcidid><orcidid>https://orcid.org/0000-0002-6130-2008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2019-05, Vol.79 (9), p.2136-2151
issn 0008-5472
1538-7445
language eng
recordid cdi_proquest_miscellaneous_2191009686
source MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals
subjects Animals
Energy Metabolism
Fatty Acid Synthases - genetics
Fatty Acid Synthases - metabolism
Fatty Acids - metabolism
Glycerophospholipids - metabolism
Humans
Lipoprotein Lipase - genetics
Lipoprotein Lipase - metabolism
Melanocytes - metabolism
Melanocytes - pathology
Melanoma - genetics
Melanoma - metabolism
Melanoma - pathology
Metabolomics
Microphthalmia-Associated Transcription Factor - genetics
ras Proteins - genetics
ras Proteins - metabolism
Transcriptome
Tumor Cells, Cultured
Zebrafish - genetics
Zebrafish - metabolism
Zebrafish Proteins - genetics
title Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte Neoplasia Progression in Zebrafish
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Fatty%20Acid%20Scavenging%20and%20Glycerophospholipid%20Metabolism%20Accompany%20Melanocyte%20Neoplasia%20Progression%20in%20Zebrafish&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Henderson,%20Fiona&rft.date=2019-05-01&rft.volume=79&rft.issue=9&rft.spage=2136&rft.epage=2151&rft.pages=2136-2151&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-18-2409&rft_dat=%3Cproquest_cross%3E2191009686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191009686&rft_id=info:pmid/30862716&rfr_iscdi=true