Deep feature regression (DFR) for 3D vessel segmentation

The structural information of coronary arteries has important clinical value for quantitative diagnosis and treatment of coronary artery disease. In this study, a deep feature regression (DFR) method based on a convolutional regression network (CRN) and a stable point clustering mechanism for 3D ves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2019-05, Vol.64 (11), p.115006-115006
Hauptverfasser: Zhao, Jingliang, Ai, Danni, Yang, Yang, Song, Hong, Huang, Yong, Wang, Yongtian, Yang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115006
container_issue 11
container_start_page 115006
container_title Physics in medicine & biology
container_volume 64
creator Zhao, Jingliang
Ai, Danni
Yang, Yang
Song, Hong
Huang, Yong
Wang, Yongtian
Yang, Jian
description The structural information of coronary arteries has important clinical value for quantitative diagnosis and treatment of coronary artery disease. In this study, a deep feature regression (DFR) method based on a convolutional regression network (CRN) and a stable point clustering mechanism for 3D vessel segmentation is proposed. First, the vessel model is constructed by a vessel section generator and a series of deviation parameter estimators. The generator provides 2D images for the training and prediction processes, while the estimators calculate pose parameters of an input vessel section. Second, estimators are trained by a series of CRNs, in which deep vessel features are automatically learned from 600 000 sample images. Third, we propose a stable point clustering mechanism that evaluates the reliability of the CRN estimation through iterative regression of vessel parameters. This mechanism eliminates the outliers, thereby increasing tracking robustness. Finally, we present a vessel segmentation algorithm using trained deviation parameter estimators. And, the termination criteria are designed based on both the number of stable points and an intensity constraint. The proposed method is evaluated on a public coronary artery data set. The average overlapping ratio and error are 97.5% and 0.27 mm, respectively. A quantitative test on a public cerebral artery data set demonstrates that the proposed DFR method tracks the vessel centerline with high accuracy, for which the average error is less than 0.33 mm.
doi_str_mv 10.1088/1361-6560/ab0eee
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2191007777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191007777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ab58cc7adebe9ab6bc218004ce7465938385a5d9f981bbc00c8775e210478bdf3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK3ePUmOFYydyWaTzVFav6AgiJ6X3c2kpOSj7iaC_96U1N6cy8DwvC_Mw9g1wj2ClAvkCYaJSGChDRDRCZseT6dsCsAxzFCICbvwfguAKKP4nE04yATjTE6ZXBHtgoJ01zsKHG0ceV-2TTBfPb3fBkXrAr4KvocjVYGnTU1Np7sBuGRnha48XR32jH0-PX4sX8L12_Pr8mEdWs6TLtRGSGtTnZOhTJvE2AglQGwpjRORccml0CLPikyiMRbAyjQVFCHEqTR5wWdsPvbuXPvVk-9UXXpLVaUbanuvIswQIB1mQGFErWu9d1SonStr7X4Ugtr7Uns5ai9Hjb6GyM2hvTc15cfAn6ABuBuBst2pbdu7Znj2_75f6fBzXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191007777</pqid></control><display><type>article</type><title>Deep feature regression (DFR) for 3D vessel segmentation</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhao, Jingliang ; Ai, Danni ; Yang, Yang ; Song, Hong ; Huang, Yong ; Wang, Yongtian ; Yang, Jian</creator><creatorcontrib>Zhao, Jingliang ; Ai, Danni ; Yang, Yang ; Song, Hong ; Huang, Yong ; Wang, Yongtian ; Yang, Jian</creatorcontrib><description>The structural information of coronary arteries has important clinical value for quantitative diagnosis and treatment of coronary artery disease. In this study, a deep feature regression (DFR) method based on a convolutional regression network (CRN) and a stable point clustering mechanism for 3D vessel segmentation is proposed. First, the vessel model is constructed by a vessel section generator and a series of deviation parameter estimators. The generator provides 2D images for the training and prediction processes, while the estimators calculate pose parameters of an input vessel section. Second, estimators are trained by a series of CRNs, in which deep vessel features are automatically learned from 600 000 sample images. Third, we propose a stable point clustering mechanism that evaluates the reliability of the CRN estimation through iterative regression of vessel parameters. This mechanism eliminates the outliers, thereby increasing tracking robustness. Finally, we present a vessel segmentation algorithm using trained deviation parameter estimators. And, the termination criteria are designed based on both the number of stable points and an intensity constraint. The proposed method is evaluated on a public coronary artery data set. The average overlapping ratio and error are 97.5% and 0.27 mm, respectively. A quantitative test on a public cerebral artery data set demonstrates that the proposed DFR method tracks the vessel centerline with high accuracy, for which the average error is less than 0.33 mm.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ab0eee</identifier><identifier>PMID: 30861498</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; convolution regression ; coronary artery segmentation ; Coronary Vessels - diagnostic imaging ; deep learning ; geometric model ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Angiography - methods ; Reproducibility of Results</subject><ispartof>Physics in medicine &amp; biology, 2019-05, Vol.64 (11), p.115006-115006</ispartof><rights>2019 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-ab58cc7adebe9ab6bc218004ce7465938385a5d9f981bbc00c8775e210478bdf3</citedby><cites>FETCH-LOGICAL-c336t-ab58cc7adebe9ab6bc218004ce7465938385a5d9f981bbc00c8775e210478bdf3</cites><orcidid>0000-0003-1250-6319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ab0eee/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30861498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jingliang</creatorcontrib><creatorcontrib>Ai, Danni</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Song, Hong</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Wang, Yongtian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><title>Deep feature regression (DFR) for 3D vessel segmentation</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>The structural information of coronary arteries has important clinical value for quantitative diagnosis and treatment of coronary artery disease. In this study, a deep feature regression (DFR) method based on a convolutional regression network (CRN) and a stable point clustering mechanism for 3D vessel segmentation is proposed. First, the vessel model is constructed by a vessel section generator and a series of deviation parameter estimators. The generator provides 2D images for the training and prediction processes, while the estimators calculate pose parameters of an input vessel section. Second, estimators are trained by a series of CRNs, in which deep vessel features are automatically learned from 600 000 sample images. Third, we propose a stable point clustering mechanism that evaluates the reliability of the CRN estimation through iterative regression of vessel parameters. This mechanism eliminates the outliers, thereby increasing tracking robustness. Finally, we present a vessel segmentation algorithm using trained deviation parameter estimators. And, the termination criteria are designed based on both the number of stable points and an intensity constraint. The proposed method is evaluated on a public coronary artery data set. The average overlapping ratio and error are 97.5% and 0.27 mm, respectively. A quantitative test on a public cerebral artery data set demonstrates that the proposed DFR method tracks the vessel centerline with high accuracy, for which the average error is less than 0.33 mm.</description><subject>Algorithms</subject><subject>convolution regression</subject><subject>coronary artery segmentation</subject><subject>Coronary Vessels - diagnostic imaging</subject><subject>deep learning</subject><subject>geometric model</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>Reproducibility of Results</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1Lw0AQhhdRbK3ePUmOFYydyWaTzVFav6AgiJ6X3c2kpOSj7iaC_96U1N6cy8DwvC_Mw9g1wj2ClAvkCYaJSGChDRDRCZseT6dsCsAxzFCICbvwfguAKKP4nE04yATjTE6ZXBHtgoJ01zsKHG0ceV-2TTBfPb3fBkXrAr4KvocjVYGnTU1Np7sBuGRnha48XR32jH0-PX4sX8L12_Pr8mEdWs6TLtRGSGtTnZOhTJvE2AglQGwpjRORccml0CLPikyiMRbAyjQVFCHEqTR5wWdsPvbuXPvVk-9UXXpLVaUbanuvIswQIB1mQGFErWu9d1SonStr7X4Ugtr7Uns5ai9Hjb6GyM2hvTc15cfAn6ABuBuBst2pbdu7Znj2_75f6fBzXg</recordid><startdate>20190523</startdate><enddate>20190523</enddate><creator>Zhao, Jingliang</creator><creator>Ai, Danni</creator><creator>Yang, Yang</creator><creator>Song, Hong</creator><creator>Huang, Yong</creator><creator>Wang, Yongtian</creator><creator>Yang, Jian</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1250-6319</orcidid></search><sort><creationdate>20190523</creationdate><title>Deep feature regression (DFR) for 3D vessel segmentation</title><author>Zhao, Jingliang ; Ai, Danni ; Yang, Yang ; Song, Hong ; Huang, Yong ; Wang, Yongtian ; Yang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ab58cc7adebe9ab6bc218004ce7465938385a5d9f981bbc00c8775e210478bdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>convolution regression</topic><topic>coronary artery segmentation</topic><topic>Coronary Vessels - diagnostic imaging</topic><topic>deep learning</topic><topic>geometric model</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jingliang</creatorcontrib><creatorcontrib>Ai, Danni</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Song, Hong</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Wang, Yongtian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jingliang</au><au>Ai, Danni</au><au>Yang, Yang</au><au>Song, Hong</au><au>Huang, Yong</au><au>Wang, Yongtian</au><au>Yang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep feature regression (DFR) for 3D vessel segmentation</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2019-05-23</date><risdate>2019</risdate><volume>64</volume><issue>11</issue><spage>115006</spage><epage>115006</epage><pages>115006-115006</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>The structural information of coronary arteries has important clinical value for quantitative diagnosis and treatment of coronary artery disease. In this study, a deep feature regression (DFR) method based on a convolutional regression network (CRN) and a stable point clustering mechanism for 3D vessel segmentation is proposed. First, the vessel model is constructed by a vessel section generator and a series of deviation parameter estimators. The generator provides 2D images for the training and prediction processes, while the estimators calculate pose parameters of an input vessel section. Second, estimators are trained by a series of CRNs, in which deep vessel features are automatically learned from 600 000 sample images. Third, we propose a stable point clustering mechanism that evaluates the reliability of the CRN estimation through iterative regression of vessel parameters. This mechanism eliminates the outliers, thereby increasing tracking robustness. Finally, we present a vessel segmentation algorithm using trained deviation parameter estimators. And, the termination criteria are designed based on both the number of stable points and an intensity constraint. The proposed method is evaluated on a public coronary artery data set. The average overlapping ratio and error are 97.5% and 0.27 mm, respectively. A quantitative test on a public cerebral artery data set demonstrates that the proposed DFR method tracks the vessel centerline with high accuracy, for which the average error is less than 0.33 mm.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30861498</pmid><doi>10.1088/1361-6560/ab0eee</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1250-6319</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2019-05, Vol.64 (11), p.115006-115006
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_proquest_miscellaneous_2191007777
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algorithms
convolution regression
coronary artery segmentation
Coronary Vessels - diagnostic imaging
deep learning
geometric model
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Angiography - methods
Reproducibility of Results
title Deep feature regression (DFR) for 3D vessel segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20feature%20regression%20(DFR)%20for%203D%20vessel%20segmentation&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Zhao,%20Jingliang&rft.date=2019-05-23&rft.volume=64&rft.issue=11&rft.spage=115006&rft.epage=115006&rft.pages=115006-115006&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ab0eee&rft_dat=%3Cproquest_cross%3E2191007777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191007777&rft_id=info:pmid/30861498&rfr_iscdi=true