Deep feature regression (DFR) for 3D vessel segmentation
The structural information of coronary arteries has important clinical value for quantitative diagnosis and treatment of coronary artery disease. In this study, a deep feature regression (DFR) method based on a convolutional regression network (CRN) and a stable point clustering mechanism for 3D ves...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2019-05, Vol.64 (11), p.115006-115006 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115006 |
---|---|
container_issue | 11 |
container_start_page | 115006 |
container_title | Physics in medicine & biology |
container_volume | 64 |
creator | Zhao, Jingliang Ai, Danni Yang, Yang Song, Hong Huang, Yong Wang, Yongtian Yang, Jian |
description | The structural information of coronary arteries has important clinical value for quantitative diagnosis and treatment of coronary artery disease. In this study, a deep feature regression (DFR) method based on a convolutional regression network (CRN) and a stable point clustering mechanism for 3D vessel segmentation is proposed. First, the vessel model is constructed by a vessel section generator and a series of deviation parameter estimators. The generator provides 2D images for the training and prediction processes, while the estimators calculate pose parameters of an input vessel section. Second, estimators are trained by a series of CRNs, in which deep vessel features are automatically learned from 600 000 sample images. Third, we propose a stable point clustering mechanism that evaluates the reliability of the CRN estimation through iterative regression of vessel parameters. This mechanism eliminates the outliers, thereby increasing tracking robustness. Finally, we present a vessel segmentation algorithm using trained deviation parameter estimators. And, the termination criteria are designed based on both the number of stable points and an intensity constraint. The proposed method is evaluated on a public coronary artery data set. The average overlapping ratio and error are 97.5% and 0.27 mm, respectively. A quantitative test on a public cerebral artery data set demonstrates that the proposed DFR method tracks the vessel centerline with high accuracy, for which the average error is less than 0.33 mm. |
doi_str_mv | 10.1088/1361-6560/ab0eee |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2191007777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191007777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ab58cc7adebe9ab6bc218004ce7465938385a5d9f981bbc00c8775e210478bdf3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK3ePUmOFYydyWaTzVFav6AgiJ6X3c2kpOSj7iaC_96U1N6cy8DwvC_Mw9g1wj2ClAvkCYaJSGChDRDRCZseT6dsCsAxzFCICbvwfguAKKP4nE04yATjTE6ZXBHtgoJ01zsKHG0ceV-2TTBfPb3fBkXrAr4KvocjVYGnTU1Np7sBuGRnha48XR32jH0-PX4sX8L12_Pr8mEdWs6TLtRGSGtTnZOhTJvE2AglQGwpjRORccml0CLPikyiMRbAyjQVFCHEqTR5wWdsPvbuXPvVk-9UXXpLVaUbanuvIswQIB1mQGFErWu9d1SonStr7X4Ugtr7Uns5ai9Hjb6GyM2hvTc15cfAn6ABuBuBst2pbdu7Znj2_75f6fBzXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191007777</pqid></control><display><type>article</type><title>Deep feature regression (DFR) for 3D vessel segmentation</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhao, Jingliang ; Ai, Danni ; Yang, Yang ; Song, Hong ; Huang, Yong ; Wang, Yongtian ; Yang, Jian</creator><creatorcontrib>Zhao, Jingliang ; Ai, Danni ; Yang, Yang ; Song, Hong ; Huang, Yong ; Wang, Yongtian ; Yang, Jian</creatorcontrib><description>The structural information of coronary arteries has important clinical value for quantitative diagnosis and treatment of coronary artery disease. In this study, a deep feature regression (DFR) method based on a convolutional regression network (CRN) and a stable point clustering mechanism for 3D vessel segmentation is proposed. First, the vessel model is constructed by a vessel section generator and a series of deviation parameter estimators. The generator provides 2D images for the training and prediction processes, while the estimators calculate pose parameters of an input vessel section. Second, estimators are trained by a series of CRNs, in which deep vessel features are automatically learned from 600 000 sample images. Third, we propose a stable point clustering mechanism that evaluates the reliability of the CRN estimation through iterative regression of vessel parameters. This mechanism eliminates the outliers, thereby increasing tracking robustness. Finally, we present a vessel segmentation algorithm using trained deviation parameter estimators. And, the termination criteria are designed based on both the number of stable points and an intensity constraint. The proposed method is evaluated on a public coronary artery data set. The average overlapping ratio and error are 97.5% and 0.27 mm, respectively. A quantitative test on a public cerebral artery data set demonstrates that the proposed DFR method tracks the vessel centerline with high accuracy, for which the average error is less than 0.33 mm.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ab0eee</identifier><identifier>PMID: 30861498</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; convolution regression ; coronary artery segmentation ; Coronary Vessels - diagnostic imaging ; deep learning ; geometric model ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Angiography - methods ; Reproducibility of Results</subject><ispartof>Physics in medicine & biology, 2019-05, Vol.64 (11), p.115006-115006</ispartof><rights>2019 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-ab58cc7adebe9ab6bc218004ce7465938385a5d9f981bbc00c8775e210478bdf3</citedby><cites>FETCH-LOGICAL-c336t-ab58cc7adebe9ab6bc218004ce7465938385a5d9f981bbc00c8775e210478bdf3</cites><orcidid>0000-0003-1250-6319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ab0eee/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30861498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jingliang</creatorcontrib><creatorcontrib>Ai, Danni</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Song, Hong</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Wang, Yongtian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><title>Deep feature regression (DFR) for 3D vessel segmentation</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>The structural information of coronary arteries has important clinical value for quantitative diagnosis and treatment of coronary artery disease. In this study, a deep feature regression (DFR) method based on a convolutional regression network (CRN) and a stable point clustering mechanism for 3D vessel segmentation is proposed. First, the vessel model is constructed by a vessel section generator and a series of deviation parameter estimators. The generator provides 2D images for the training and prediction processes, while the estimators calculate pose parameters of an input vessel section. Second, estimators are trained by a series of CRNs, in which deep vessel features are automatically learned from 600 000 sample images. Third, we propose a stable point clustering mechanism that evaluates the reliability of the CRN estimation through iterative regression of vessel parameters. This mechanism eliminates the outliers, thereby increasing tracking robustness. Finally, we present a vessel segmentation algorithm using trained deviation parameter estimators. And, the termination criteria are designed based on both the number of stable points and an intensity constraint. The proposed method is evaluated on a public coronary artery data set. The average overlapping ratio and error are 97.5% and 0.27 mm, respectively. A quantitative test on a public cerebral artery data set demonstrates that the proposed DFR method tracks the vessel centerline with high accuracy, for which the average error is less than 0.33 mm.</description><subject>Algorithms</subject><subject>convolution regression</subject><subject>coronary artery segmentation</subject><subject>Coronary Vessels - diagnostic imaging</subject><subject>deep learning</subject><subject>geometric model</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>Reproducibility of Results</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1Lw0AQhhdRbK3ePUmOFYydyWaTzVFav6AgiJ6X3c2kpOSj7iaC_96U1N6cy8DwvC_Mw9g1wj2ClAvkCYaJSGChDRDRCZseT6dsCsAxzFCICbvwfguAKKP4nE04yATjTE6ZXBHtgoJ01zsKHG0ceV-2TTBfPb3fBkXrAr4KvocjVYGnTU1Np7sBuGRnha48XR32jH0-PX4sX8L12_Pr8mEdWs6TLtRGSGtTnZOhTJvE2AglQGwpjRORccml0CLPikyiMRbAyjQVFCHEqTR5wWdsPvbuXPvVk-9UXXpLVaUbanuvIswQIB1mQGFErWu9d1SonStr7X4Ugtr7Uns5ai9Hjb6GyM2hvTc15cfAn6ABuBuBst2pbdu7Znj2_75f6fBzXg</recordid><startdate>20190523</startdate><enddate>20190523</enddate><creator>Zhao, Jingliang</creator><creator>Ai, Danni</creator><creator>Yang, Yang</creator><creator>Song, Hong</creator><creator>Huang, Yong</creator><creator>Wang, Yongtian</creator><creator>Yang, Jian</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1250-6319</orcidid></search><sort><creationdate>20190523</creationdate><title>Deep feature regression (DFR) for 3D vessel segmentation</title><author>Zhao, Jingliang ; Ai, Danni ; Yang, Yang ; Song, Hong ; Huang, Yong ; Wang, Yongtian ; Yang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ab58cc7adebe9ab6bc218004ce7465938385a5d9f981bbc00c8775e210478bdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>convolution regression</topic><topic>coronary artery segmentation</topic><topic>Coronary Vessels - diagnostic imaging</topic><topic>deep learning</topic><topic>geometric model</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jingliang</creatorcontrib><creatorcontrib>Ai, Danni</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Song, Hong</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Wang, Yongtian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jingliang</au><au>Ai, Danni</au><au>Yang, Yang</au><au>Song, Hong</au><au>Huang, Yong</au><au>Wang, Yongtian</au><au>Yang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep feature regression (DFR) for 3D vessel segmentation</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2019-05-23</date><risdate>2019</risdate><volume>64</volume><issue>11</issue><spage>115006</spage><epage>115006</epage><pages>115006-115006</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>The structural information of coronary arteries has important clinical value for quantitative diagnosis and treatment of coronary artery disease. In this study, a deep feature regression (DFR) method based on a convolutional regression network (CRN) and a stable point clustering mechanism for 3D vessel segmentation is proposed. First, the vessel model is constructed by a vessel section generator and a series of deviation parameter estimators. The generator provides 2D images for the training and prediction processes, while the estimators calculate pose parameters of an input vessel section. Second, estimators are trained by a series of CRNs, in which deep vessel features are automatically learned from 600 000 sample images. Third, we propose a stable point clustering mechanism that evaluates the reliability of the CRN estimation through iterative regression of vessel parameters. This mechanism eliminates the outliers, thereby increasing tracking robustness. Finally, we present a vessel segmentation algorithm using trained deviation parameter estimators. And, the termination criteria are designed based on both the number of stable points and an intensity constraint. The proposed method is evaluated on a public coronary artery data set. The average overlapping ratio and error are 97.5% and 0.27 mm, respectively. A quantitative test on a public cerebral artery data set demonstrates that the proposed DFR method tracks the vessel centerline with high accuracy, for which the average error is less than 0.33 mm.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30861498</pmid><doi>10.1088/1361-6560/ab0eee</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1250-6319</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2019-05, Vol.64 (11), p.115006-115006 |
issn | 0031-9155 1361-6560 1361-6560 |
language | eng |
recordid | cdi_proquest_miscellaneous_2191007777 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Algorithms convolution regression coronary artery segmentation Coronary Vessels - diagnostic imaging deep learning geometric model Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Angiography - methods Reproducibility of Results |
title | Deep feature regression (DFR) for 3D vessel segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20feature%20regression%20(DFR)%20for%203D%20vessel%20segmentation&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Zhao,%20Jingliang&rft.date=2019-05-23&rft.volume=64&rft.issue=11&rft.spage=115006&rft.epage=115006&rft.pages=115006-115006&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ab0eee&rft_dat=%3Cproquest_cross%3E2191007777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191007777&rft_id=info:pmid/30861498&rfr_iscdi=true |