Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments

Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature microbiology 2019-06, Vol.4 (6), p.1014-1023
Hauptverfasser: Kessler, Adam J., Chen, Ya-Jou, Waite, David W., Hutchinson, Tess, Koh, Sharlynn, Popa, M. Elena, Beardall, John, Hugenholtz, Philip, Cook, Perran L. M., Greening, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1023
container_issue 6
container_start_page 1014
container_title Nature microbiology
container_volume 4
creator Kessler, Adam J.
Chen, Ya-Jou
Waite, David W.
Hutchinson, Tess
Koh, Sharlynn
Popa, M. Elena
Beardall, John
Hugenholtz, Philip
Cook, Perran L. M.
Greening, Chris
description Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic–anoxic transitions. Here, we show that molecular hydrogen (H 2 ) accumulates in silicate sand sediments due to decoupling of bacterial fermentation and respiration processes following anoxia. In situ measurements show that H 2 is 250-fold supersaturated in the water column overlying these sediments and has an isotopic composition consistent with fermentative production. Genome-resolved shotgun metagenomic profiling suggests that the sands harbour diverse and specialized microbial communities with a high abundance of [NiFe]-hydrogenase genes. Hydrogenase profiles predict that H 2 is primarily produced by facultatively fermentative bacteria, including the dominant gammaproteobacterial family Woeseiaceae, and can be consumed by aerobic respiratory bacteria. Flow-through reactor and slurry experiments consistently demonstrate that H 2 is rapidly produced by fermentation following anoxia, immediately consumed by aerobic respiration following reaeration and consumed by sulfate reduction only during prolonged anoxia. Hydrogenotrophic sulfur, nitrate and nitrite reducers were also detected, although contrary to previous hypotheses there was limited capacity for microalgal fermentation. In combination, these experiments confirm that fermentation dominates anoxic carbon mineralization in these permeable sediments and, in contrast to the case in cohesive sediments, is largely uncoupled from anaerobic respiration. Frequent changes in oxygen availability in these sediments may have selected for metabolically flexible bacteria while excluding strict anaerobes. In sandy, permeable sediments, which frequently cycle between oxic and anoxic conditions, there is an uncoupling of fermentative and respiratory bacteria, and bacterial, rather than microalgal, fermentation drives the accumulation of hydrogen in this environment.
doi_str_mv 10.1038/s41564-019-0391-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2190495961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229261517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-d4a7fc929d2b84781acc777c47182b1fa83831cfcf6e11526fa7c1a63fdc0a053</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMozjD6AG6k4MZNNSdtLl3q4A0G3OhOCJn0RDp02pq0oD69KfWG4CoJ-f4_Jx8hR0DPgGbqPOTARZ5SKFKaFZC-75A5o1ylnEmx-2s_I4chbCilIJgQSuyTWUYVV1xmc_J0aWyPvjJ14tBvselNX7VNYpoy8Ri6yk_nzrcWQ8CQGI_J0Nh26Gosk2pE29fKJt0YN-sak4BlNTaFA7LnTB3w8HNdkMfrq4flbbq6v7lbXqxSG__Qp2VupLMFK0q2VrlUYKyVUtpcgmJrcEZlKgPrrBMIwJlwRlowInOlpYbybEFOp9445cuAodfbKlisa9NgOwTNoKB5wQsBET35g27awTdxOs0YK5gADjJSMFHWtyF4dLrz1db4Nw1Uj_b1ZF9H-3q0r99j5vizeVhvsfxOfLmOAJuAEK-aZ_Q_T__f-gEiWZEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229261517</pqid></control><display><type>article</type><title>Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kessler, Adam J. ; Chen, Ya-Jou ; Waite, David W. ; Hutchinson, Tess ; Koh, Sharlynn ; Popa, M. Elena ; Beardall, John ; Hugenholtz, Philip ; Cook, Perran L. M. ; Greening, Chris</creator><creatorcontrib>Kessler, Adam J. ; Chen, Ya-Jou ; Waite, David W. ; Hutchinson, Tess ; Koh, Sharlynn ; Popa, M. Elena ; Beardall, John ; Hugenholtz, Philip ; Cook, Perran L. M. ; Greening, Chris</creatorcontrib><description>Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic–anoxic transitions. Here, we show that molecular hydrogen (H 2 ) accumulates in silicate sand sediments due to decoupling of bacterial fermentation and respiration processes following anoxia. In situ measurements show that H 2 is 250-fold supersaturated in the water column overlying these sediments and has an isotopic composition consistent with fermentative production. Genome-resolved shotgun metagenomic profiling suggests that the sands harbour diverse and specialized microbial communities with a high abundance of [NiFe]-hydrogenase genes. Hydrogenase profiles predict that H 2 is primarily produced by facultatively fermentative bacteria, including the dominant gammaproteobacterial family Woeseiaceae, and can be consumed by aerobic respiratory bacteria. Flow-through reactor and slurry experiments consistently demonstrate that H 2 is rapidly produced by fermentation following anoxia, immediately consumed by aerobic respiration following reaeration and consumed by sulfate reduction only during prolonged anoxia. Hydrogenotrophic sulfur, nitrate and nitrite reducers were also detected, although contrary to previous hypotheses there was limited capacity for microalgal fermentation. In combination, these experiments confirm that fermentation dominates anoxic carbon mineralization in these permeable sediments and, in contrast to the case in cohesive sediments, is largely uncoupled from anaerobic respiration. Frequent changes in oxygen availability in these sediments may have selected for metabolically flexible bacteria while excluding strict anaerobes. In sandy, permeable sediments, which frequently cycle between oxic and anoxic conditions, there is an uncoupling of fermentative and respiratory bacteria, and bacterial, rather than microalgal, fermentation drives the accumulation of hydrogen in this environment.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-019-0391-z</identifier><identifier>PMID: 30858573</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 631/326/2565/855 ; 704/47 ; Aerobic respiration ; Anaerobic respiration ; Anoxia ; Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Bacteria, Anaerobic - metabolism ; Biomedical and Life Sciences ; Carbon Cycle ; Fermentation ; Gammaproteobacteria - metabolism ; Genomes ; Geologic Sediments - microbiology ; Hydrogen - metabolism ; Hydrogenase ; Hydrogenase - classification ; Hydrogenase - genetics ; Hypoxia ; Infectious Diseases ; Life Sciences ; Medical Microbiology ; Metagenomics ; Microbiology ; Microbiota ; Mineralization ; Nitrates - metabolism ; Nitrites - metabolism ; Oceans and Seas ; Oxidation-Reduction ; Parasitology ; Respiration ; RNA, Ribosomal, 16S ; Sediments ; Slurries ; Sulfate reduction ; Sulfates - metabolism ; Sulfur ; Virology ; Water column</subject><ispartof>Nature microbiology, 2019-06, Vol.4 (6), p.1014-1023</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-d4a7fc929d2b84781acc777c47182b1fa83831cfcf6e11526fa7c1a63fdc0a053</citedby><cites>FETCH-LOGICAL-c415t-d4a7fc929d2b84781acc777c47182b1fa83831cfcf6e11526fa7c1a63fdc0a053</cites><orcidid>0000-0001-7616-0594 ; 0000-0002-0444-3488 ; 0000-0003-4753-9292 ; 0000-0001-5386-7925 ; 0000-0001-7684-446X ; 0000-0001-7957-0329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41564-019-0391-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41564-019-0391-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30858573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kessler, Adam J.</creatorcontrib><creatorcontrib>Chen, Ya-Jou</creatorcontrib><creatorcontrib>Waite, David W.</creatorcontrib><creatorcontrib>Hutchinson, Tess</creatorcontrib><creatorcontrib>Koh, Sharlynn</creatorcontrib><creatorcontrib>Popa, M. Elena</creatorcontrib><creatorcontrib>Beardall, John</creatorcontrib><creatorcontrib>Hugenholtz, Philip</creatorcontrib><creatorcontrib>Cook, Perran L. M.</creatorcontrib><creatorcontrib>Greening, Chris</creatorcontrib><title>Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic–anoxic transitions. Here, we show that molecular hydrogen (H 2 ) accumulates in silicate sand sediments due to decoupling of bacterial fermentation and respiration processes following anoxia. In situ measurements show that H 2 is 250-fold supersaturated in the water column overlying these sediments and has an isotopic composition consistent with fermentative production. Genome-resolved shotgun metagenomic profiling suggests that the sands harbour diverse and specialized microbial communities with a high abundance of [NiFe]-hydrogenase genes. Hydrogenase profiles predict that H 2 is primarily produced by facultatively fermentative bacteria, including the dominant gammaproteobacterial family Woeseiaceae, and can be consumed by aerobic respiratory bacteria. Flow-through reactor and slurry experiments consistently demonstrate that H 2 is rapidly produced by fermentation following anoxia, immediately consumed by aerobic respiration following reaeration and consumed by sulfate reduction only during prolonged anoxia. Hydrogenotrophic sulfur, nitrate and nitrite reducers were also detected, although contrary to previous hypotheses there was limited capacity for microalgal fermentation. In combination, these experiments confirm that fermentation dominates anoxic carbon mineralization in these permeable sediments and, in contrast to the case in cohesive sediments, is largely uncoupled from anaerobic respiration. Frequent changes in oxygen availability in these sediments may have selected for metabolically flexible bacteria while excluding strict anaerobes. In sandy, permeable sediments, which frequently cycle between oxic and anoxic conditions, there is an uncoupling of fermentative and respiratory bacteria, and bacterial, rather than microalgal, fermentation drives the accumulation of hydrogen in this environment.</description><subject>45/23</subject><subject>631/326/2565/855</subject><subject>704/47</subject><subject>Aerobic respiration</subject><subject>Anaerobic respiration</subject><subject>Anoxia</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Bacteria, Anaerobic - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon Cycle</subject><subject>Fermentation</subject><subject>Gammaproteobacteria - metabolism</subject><subject>Genomes</subject><subject>Geologic Sediments - microbiology</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogenase</subject><subject>Hydrogenase - classification</subject><subject>Hydrogenase - genetics</subject><subject>Hypoxia</subject><subject>Infectious Diseases</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Metagenomics</subject><subject>Microbiology</subject><subject>Microbiota</subject><subject>Mineralization</subject><subject>Nitrates - metabolism</subject><subject>Nitrites - metabolism</subject><subject>Oceans and Seas</subject><subject>Oxidation-Reduction</subject><subject>Parasitology</subject><subject>Respiration</subject><subject>RNA, Ribosomal, 16S</subject><subject>Sediments</subject><subject>Slurries</subject><subject>Sulfate reduction</subject><subject>Sulfates - metabolism</subject><subject>Sulfur</subject><subject>Virology</subject><subject>Water column</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMtKxDAUhoMozjD6AG6k4MZNNSdtLl3q4A0G3OhOCJn0RDp02pq0oD69KfWG4CoJ-f4_Jx8hR0DPgGbqPOTARZ5SKFKaFZC-75A5o1ylnEmx-2s_I4chbCilIJgQSuyTWUYVV1xmc_J0aWyPvjJ14tBvselNX7VNYpoy8Ri6yk_nzrcWQ8CQGI_J0Nh26Gosk2pE29fKJt0YN-sak4BlNTaFA7LnTB3w8HNdkMfrq4flbbq6v7lbXqxSG__Qp2VupLMFK0q2VrlUYKyVUtpcgmJrcEZlKgPrrBMIwJlwRlowInOlpYbybEFOp9445cuAodfbKlisa9NgOwTNoKB5wQsBET35g27awTdxOs0YK5gADjJSMFHWtyF4dLrz1db4Nw1Uj_b1ZF9H-3q0r99j5vizeVhvsfxOfLmOAJuAEK-aZ_Q_T__f-gEiWZEA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Kessler, Adam J.</creator><creator>Chen, Ya-Jou</creator><creator>Waite, David W.</creator><creator>Hutchinson, Tess</creator><creator>Koh, Sharlynn</creator><creator>Popa, M. Elena</creator><creator>Beardall, John</creator><creator>Hugenholtz, Philip</creator><creator>Cook, Perran L. M.</creator><creator>Greening, Chris</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7616-0594</orcidid><orcidid>https://orcid.org/0000-0002-0444-3488</orcidid><orcidid>https://orcid.org/0000-0003-4753-9292</orcidid><orcidid>https://orcid.org/0000-0001-5386-7925</orcidid><orcidid>https://orcid.org/0000-0001-7684-446X</orcidid><orcidid>https://orcid.org/0000-0001-7957-0329</orcidid></search><sort><creationdate>20190601</creationdate><title>Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments</title><author>Kessler, Adam J. ; Chen, Ya-Jou ; Waite, David W. ; Hutchinson, Tess ; Koh, Sharlynn ; Popa, M. Elena ; Beardall, John ; Hugenholtz, Philip ; Cook, Perran L. M. ; Greening, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-d4a7fc929d2b84781acc777c47182b1fa83831cfcf6e11526fa7c1a63fdc0a053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>45/23</topic><topic>631/326/2565/855</topic><topic>704/47</topic><topic>Aerobic respiration</topic><topic>Anaerobic respiration</topic><topic>Anoxia</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Bacteria, Anaerobic - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon Cycle</topic><topic>Fermentation</topic><topic>Gammaproteobacteria - metabolism</topic><topic>Genomes</topic><topic>Geologic Sediments - microbiology</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogenase</topic><topic>Hydrogenase - classification</topic><topic>Hydrogenase - genetics</topic><topic>Hypoxia</topic><topic>Infectious Diseases</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Metagenomics</topic><topic>Microbiology</topic><topic>Microbiota</topic><topic>Mineralization</topic><topic>Nitrates - metabolism</topic><topic>Nitrites - metabolism</topic><topic>Oceans and Seas</topic><topic>Oxidation-Reduction</topic><topic>Parasitology</topic><topic>Respiration</topic><topic>RNA, Ribosomal, 16S</topic><topic>Sediments</topic><topic>Slurries</topic><topic>Sulfate reduction</topic><topic>Sulfates - metabolism</topic><topic>Sulfur</topic><topic>Virology</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessler, Adam J.</creatorcontrib><creatorcontrib>Chen, Ya-Jou</creatorcontrib><creatorcontrib>Waite, David W.</creatorcontrib><creatorcontrib>Hutchinson, Tess</creatorcontrib><creatorcontrib>Koh, Sharlynn</creatorcontrib><creatorcontrib>Popa, M. Elena</creatorcontrib><creatorcontrib>Beardall, John</creatorcontrib><creatorcontrib>Hugenholtz, Philip</creatorcontrib><creatorcontrib>Cook, Perran L. M.</creatorcontrib><creatorcontrib>Greening, Chris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, Adam J.</au><au>Chen, Ya-Jou</au><au>Waite, David W.</au><au>Hutchinson, Tess</au><au>Koh, Sharlynn</au><au>Popa, M. Elena</au><au>Beardall, John</au><au>Hugenholtz, Philip</au><au>Cook, Perran L. M.</au><au>Greening, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>4</volume><issue>6</issue><spage>1014</spage><epage>1023</epage><pages>1014-1023</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic–anoxic transitions. Here, we show that molecular hydrogen (H 2 ) accumulates in silicate sand sediments due to decoupling of bacterial fermentation and respiration processes following anoxia. In situ measurements show that H 2 is 250-fold supersaturated in the water column overlying these sediments and has an isotopic composition consistent with fermentative production. Genome-resolved shotgun metagenomic profiling suggests that the sands harbour diverse and specialized microbial communities with a high abundance of [NiFe]-hydrogenase genes. Hydrogenase profiles predict that H 2 is primarily produced by facultatively fermentative bacteria, including the dominant gammaproteobacterial family Woeseiaceae, and can be consumed by aerobic respiratory bacteria. Flow-through reactor and slurry experiments consistently demonstrate that H 2 is rapidly produced by fermentation following anoxia, immediately consumed by aerobic respiration following reaeration and consumed by sulfate reduction only during prolonged anoxia. Hydrogenotrophic sulfur, nitrate and nitrite reducers were also detected, although contrary to previous hypotheses there was limited capacity for microalgal fermentation. In combination, these experiments confirm that fermentation dominates anoxic carbon mineralization in these permeable sediments and, in contrast to the case in cohesive sediments, is largely uncoupled from anaerobic respiration. Frequent changes in oxygen availability in these sediments may have selected for metabolically flexible bacteria while excluding strict anaerobes. In sandy, permeable sediments, which frequently cycle between oxic and anoxic conditions, there is an uncoupling of fermentative and respiratory bacteria, and bacterial, rather than microalgal, fermentation drives the accumulation of hydrogen in this environment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30858573</pmid><doi>10.1038/s41564-019-0391-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7616-0594</orcidid><orcidid>https://orcid.org/0000-0002-0444-3488</orcidid><orcidid>https://orcid.org/0000-0003-4753-9292</orcidid><orcidid>https://orcid.org/0000-0001-5386-7925</orcidid><orcidid>https://orcid.org/0000-0001-7684-446X</orcidid><orcidid>https://orcid.org/0000-0001-7957-0329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-5276
ispartof Nature microbiology, 2019-06, Vol.4 (6), p.1014-1023
issn 2058-5276
2058-5276
language eng
recordid cdi_proquest_miscellaneous_2190495961
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 45/23
631/326/2565/855
704/47
Aerobic respiration
Anaerobic respiration
Anoxia
Bacteria
Bacteria - genetics
Bacteria - metabolism
Bacteria, Anaerobic - metabolism
Biomedical and Life Sciences
Carbon Cycle
Fermentation
Gammaproteobacteria - metabolism
Genomes
Geologic Sediments - microbiology
Hydrogen - metabolism
Hydrogenase
Hydrogenase - classification
Hydrogenase - genetics
Hypoxia
Infectious Diseases
Life Sciences
Medical Microbiology
Metagenomics
Microbiology
Microbiota
Mineralization
Nitrates - metabolism
Nitrites - metabolism
Oceans and Seas
Oxidation-Reduction
Parasitology
Respiration
RNA, Ribosomal, 16S
Sediments
Slurries
Sulfate reduction
Sulfates - metabolism
Sulfur
Virology
Water column
title Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20fermentation%20and%20respiration%20processes%20are%20uncoupled%20in%20anoxic%20permeable%20sediments&rft.jtitle=Nature%20microbiology&rft.au=Kessler,%20Adam%20J.&rft.date=2019-06-01&rft.volume=4&rft.issue=6&rft.spage=1014&rft.epage=1023&rft.pages=1014-1023&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-019-0391-z&rft_dat=%3Cproquest_cross%3E2229261517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229261517&rft_id=info:pmid/30858573&rfr_iscdi=true