Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments
Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments...
Gespeichert in:
Veröffentlicht in: | Nature microbiology 2019-06, Vol.4 (6), p.1014-1023 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1023 |
---|---|
container_issue | 6 |
container_start_page | 1014 |
container_title | Nature microbiology |
container_volume | 4 |
creator | Kessler, Adam J. Chen, Ya-Jou Waite, David W. Hutchinson, Tess Koh, Sharlynn Popa, M. Elena Beardall, John Hugenholtz, Philip Cook, Perran L. M. Greening, Chris |
description | Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic–anoxic transitions. Here, we show that molecular hydrogen (H
2
) accumulates in silicate sand sediments due to decoupling of bacterial fermentation and respiration processes following anoxia. In situ measurements show that H
2
is 250-fold supersaturated in the water column overlying these sediments and has an isotopic composition consistent with fermentative production. Genome-resolved shotgun metagenomic profiling suggests that the sands harbour diverse and specialized microbial communities with a high abundance of [NiFe]-hydrogenase genes. Hydrogenase profiles predict that H
2
is primarily produced by facultatively fermentative bacteria, including the dominant gammaproteobacterial family Woeseiaceae, and can be consumed by aerobic respiratory bacteria. Flow-through reactor and slurry experiments consistently demonstrate that H
2
is rapidly produced by fermentation following anoxia, immediately consumed by aerobic respiration following reaeration and consumed by sulfate reduction only during prolonged anoxia. Hydrogenotrophic sulfur, nitrate and nitrite reducers were also detected, although contrary to previous hypotheses there was limited capacity for microalgal fermentation. In combination, these experiments confirm that fermentation dominates anoxic carbon mineralization in these permeable sediments and, in contrast to the case in cohesive sediments, is largely uncoupled from anaerobic respiration. Frequent changes in oxygen availability in these sediments may have selected for metabolically flexible bacteria while excluding strict anaerobes.
In sandy, permeable sediments, which frequently cycle between oxic and anoxic conditions, there is an uncoupling of fermentative and respiratory bacteria, and bacterial, rather than microalgal, fermentation drives the accumulation of hydrogen in this environment. |
doi_str_mv | 10.1038/s41564-019-0391-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2190495961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229261517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-d4a7fc929d2b84781acc777c47182b1fa83831cfcf6e11526fa7c1a63fdc0a053</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMozjD6AG6k4MZNNSdtLl3q4A0G3OhOCJn0RDp02pq0oD69KfWG4CoJ-f4_Jx8hR0DPgGbqPOTARZ5SKFKaFZC-75A5o1ylnEmx-2s_I4chbCilIJgQSuyTWUYVV1xmc_J0aWyPvjJ14tBvselNX7VNYpoy8Ri6yk_nzrcWQ8CQGI_J0Nh26Gosk2pE29fKJt0YN-sak4BlNTaFA7LnTB3w8HNdkMfrq4flbbq6v7lbXqxSG__Qp2VupLMFK0q2VrlUYKyVUtpcgmJrcEZlKgPrrBMIwJlwRlowInOlpYbybEFOp9445cuAodfbKlisa9NgOwTNoKB5wQsBET35g27awTdxOs0YK5gADjJSMFHWtyF4dLrz1db4Nw1Uj_b1ZF9H-3q0r99j5vizeVhvsfxOfLmOAJuAEK-aZ_Q_T__f-gEiWZEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229261517</pqid></control><display><type>article</type><title>Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kessler, Adam J. ; Chen, Ya-Jou ; Waite, David W. ; Hutchinson, Tess ; Koh, Sharlynn ; Popa, M. Elena ; Beardall, John ; Hugenholtz, Philip ; Cook, Perran L. M. ; Greening, Chris</creator><creatorcontrib>Kessler, Adam J. ; Chen, Ya-Jou ; Waite, David W. ; Hutchinson, Tess ; Koh, Sharlynn ; Popa, M. Elena ; Beardall, John ; Hugenholtz, Philip ; Cook, Perran L. M. ; Greening, Chris</creatorcontrib><description>Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic–anoxic transitions. Here, we show that molecular hydrogen (H
2
) accumulates in silicate sand sediments due to decoupling of bacterial fermentation and respiration processes following anoxia. In situ measurements show that H
2
is 250-fold supersaturated in the water column overlying these sediments and has an isotopic composition consistent with fermentative production. Genome-resolved shotgun metagenomic profiling suggests that the sands harbour diverse and specialized microbial communities with a high abundance of [NiFe]-hydrogenase genes. Hydrogenase profiles predict that H
2
is primarily produced by facultatively fermentative bacteria, including the dominant gammaproteobacterial family Woeseiaceae, and can be consumed by aerobic respiratory bacteria. Flow-through reactor and slurry experiments consistently demonstrate that H
2
is rapidly produced by fermentation following anoxia, immediately consumed by aerobic respiration following reaeration and consumed by sulfate reduction only during prolonged anoxia. Hydrogenotrophic sulfur, nitrate and nitrite reducers were also detected, although contrary to previous hypotheses there was limited capacity for microalgal fermentation. In combination, these experiments confirm that fermentation dominates anoxic carbon mineralization in these permeable sediments and, in contrast to the case in cohesive sediments, is largely uncoupled from anaerobic respiration. Frequent changes in oxygen availability in these sediments may have selected for metabolically flexible bacteria while excluding strict anaerobes.
In sandy, permeable sediments, which frequently cycle between oxic and anoxic conditions, there is an uncoupling of fermentative and respiratory bacteria, and bacterial, rather than microalgal, fermentation drives the accumulation of hydrogen in this environment.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-019-0391-z</identifier><identifier>PMID: 30858573</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 631/326/2565/855 ; 704/47 ; Aerobic respiration ; Anaerobic respiration ; Anoxia ; Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Bacteria, Anaerobic - metabolism ; Biomedical and Life Sciences ; Carbon Cycle ; Fermentation ; Gammaproteobacteria - metabolism ; Genomes ; Geologic Sediments - microbiology ; Hydrogen - metabolism ; Hydrogenase ; Hydrogenase - classification ; Hydrogenase - genetics ; Hypoxia ; Infectious Diseases ; Life Sciences ; Medical Microbiology ; Metagenomics ; Microbiology ; Microbiota ; Mineralization ; Nitrates - metabolism ; Nitrites - metabolism ; Oceans and Seas ; Oxidation-Reduction ; Parasitology ; Respiration ; RNA, Ribosomal, 16S ; Sediments ; Slurries ; Sulfate reduction ; Sulfates - metabolism ; Sulfur ; Virology ; Water column</subject><ispartof>Nature microbiology, 2019-06, Vol.4 (6), p.1014-1023</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-d4a7fc929d2b84781acc777c47182b1fa83831cfcf6e11526fa7c1a63fdc0a053</citedby><cites>FETCH-LOGICAL-c415t-d4a7fc929d2b84781acc777c47182b1fa83831cfcf6e11526fa7c1a63fdc0a053</cites><orcidid>0000-0001-7616-0594 ; 0000-0002-0444-3488 ; 0000-0003-4753-9292 ; 0000-0001-5386-7925 ; 0000-0001-7684-446X ; 0000-0001-7957-0329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41564-019-0391-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41564-019-0391-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30858573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kessler, Adam J.</creatorcontrib><creatorcontrib>Chen, Ya-Jou</creatorcontrib><creatorcontrib>Waite, David W.</creatorcontrib><creatorcontrib>Hutchinson, Tess</creatorcontrib><creatorcontrib>Koh, Sharlynn</creatorcontrib><creatorcontrib>Popa, M. Elena</creatorcontrib><creatorcontrib>Beardall, John</creatorcontrib><creatorcontrib>Hugenholtz, Philip</creatorcontrib><creatorcontrib>Cook, Perran L. M.</creatorcontrib><creatorcontrib>Greening, Chris</creatorcontrib><title>Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic–anoxic transitions. Here, we show that molecular hydrogen (H
2
) accumulates in silicate sand sediments due to decoupling of bacterial fermentation and respiration processes following anoxia. In situ measurements show that H
2
is 250-fold supersaturated in the water column overlying these sediments and has an isotopic composition consistent with fermentative production. Genome-resolved shotgun metagenomic profiling suggests that the sands harbour diverse and specialized microbial communities with a high abundance of [NiFe]-hydrogenase genes. Hydrogenase profiles predict that H
2
is primarily produced by facultatively fermentative bacteria, including the dominant gammaproteobacterial family Woeseiaceae, and can be consumed by aerobic respiratory bacteria. Flow-through reactor and slurry experiments consistently demonstrate that H
2
is rapidly produced by fermentation following anoxia, immediately consumed by aerobic respiration following reaeration and consumed by sulfate reduction only during prolonged anoxia. Hydrogenotrophic sulfur, nitrate and nitrite reducers were also detected, although contrary to previous hypotheses there was limited capacity for microalgal fermentation. In combination, these experiments confirm that fermentation dominates anoxic carbon mineralization in these permeable sediments and, in contrast to the case in cohesive sediments, is largely uncoupled from anaerobic respiration. Frequent changes in oxygen availability in these sediments may have selected for metabolically flexible bacteria while excluding strict anaerobes.
In sandy, permeable sediments, which frequently cycle between oxic and anoxic conditions, there is an uncoupling of fermentative and respiratory bacteria, and bacterial, rather than microalgal, fermentation drives the accumulation of hydrogen in this environment.</description><subject>45/23</subject><subject>631/326/2565/855</subject><subject>704/47</subject><subject>Aerobic respiration</subject><subject>Anaerobic respiration</subject><subject>Anoxia</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Bacteria, Anaerobic - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon Cycle</subject><subject>Fermentation</subject><subject>Gammaproteobacteria - metabolism</subject><subject>Genomes</subject><subject>Geologic Sediments - microbiology</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogenase</subject><subject>Hydrogenase - classification</subject><subject>Hydrogenase - genetics</subject><subject>Hypoxia</subject><subject>Infectious Diseases</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Metagenomics</subject><subject>Microbiology</subject><subject>Microbiota</subject><subject>Mineralization</subject><subject>Nitrates - metabolism</subject><subject>Nitrites - metabolism</subject><subject>Oceans and Seas</subject><subject>Oxidation-Reduction</subject><subject>Parasitology</subject><subject>Respiration</subject><subject>RNA, Ribosomal, 16S</subject><subject>Sediments</subject><subject>Slurries</subject><subject>Sulfate reduction</subject><subject>Sulfates - metabolism</subject><subject>Sulfur</subject><subject>Virology</subject><subject>Water column</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMtKxDAUhoMozjD6AG6k4MZNNSdtLl3q4A0G3OhOCJn0RDp02pq0oD69KfWG4CoJ-f4_Jx8hR0DPgGbqPOTARZ5SKFKaFZC-75A5o1ylnEmx-2s_I4chbCilIJgQSuyTWUYVV1xmc_J0aWyPvjJ14tBvselNX7VNYpoy8Ri6yk_nzrcWQ8CQGI_J0Nh26Gosk2pE29fKJt0YN-sak4BlNTaFA7LnTB3w8HNdkMfrq4flbbq6v7lbXqxSG__Qp2VupLMFK0q2VrlUYKyVUtpcgmJrcEZlKgPrrBMIwJlwRlowInOlpYbybEFOp9445cuAodfbKlisa9NgOwTNoKB5wQsBET35g27awTdxOs0YK5gADjJSMFHWtyF4dLrz1db4Nw1Uj_b1ZF9H-3q0r99j5vizeVhvsfxOfLmOAJuAEK-aZ_Q_T__f-gEiWZEA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Kessler, Adam J.</creator><creator>Chen, Ya-Jou</creator><creator>Waite, David W.</creator><creator>Hutchinson, Tess</creator><creator>Koh, Sharlynn</creator><creator>Popa, M. Elena</creator><creator>Beardall, John</creator><creator>Hugenholtz, Philip</creator><creator>Cook, Perran L. M.</creator><creator>Greening, Chris</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7616-0594</orcidid><orcidid>https://orcid.org/0000-0002-0444-3488</orcidid><orcidid>https://orcid.org/0000-0003-4753-9292</orcidid><orcidid>https://orcid.org/0000-0001-5386-7925</orcidid><orcidid>https://orcid.org/0000-0001-7684-446X</orcidid><orcidid>https://orcid.org/0000-0001-7957-0329</orcidid></search><sort><creationdate>20190601</creationdate><title>Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments</title><author>Kessler, Adam J. ; Chen, Ya-Jou ; Waite, David W. ; Hutchinson, Tess ; Koh, Sharlynn ; Popa, M. Elena ; Beardall, John ; Hugenholtz, Philip ; Cook, Perran L. M. ; Greening, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-d4a7fc929d2b84781acc777c47182b1fa83831cfcf6e11526fa7c1a63fdc0a053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>45/23</topic><topic>631/326/2565/855</topic><topic>704/47</topic><topic>Aerobic respiration</topic><topic>Anaerobic respiration</topic><topic>Anoxia</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Bacteria, Anaerobic - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon Cycle</topic><topic>Fermentation</topic><topic>Gammaproteobacteria - metabolism</topic><topic>Genomes</topic><topic>Geologic Sediments - microbiology</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogenase</topic><topic>Hydrogenase - classification</topic><topic>Hydrogenase - genetics</topic><topic>Hypoxia</topic><topic>Infectious Diseases</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Metagenomics</topic><topic>Microbiology</topic><topic>Microbiota</topic><topic>Mineralization</topic><topic>Nitrates - metabolism</topic><topic>Nitrites - metabolism</topic><topic>Oceans and Seas</topic><topic>Oxidation-Reduction</topic><topic>Parasitology</topic><topic>Respiration</topic><topic>RNA, Ribosomal, 16S</topic><topic>Sediments</topic><topic>Slurries</topic><topic>Sulfate reduction</topic><topic>Sulfates - metabolism</topic><topic>Sulfur</topic><topic>Virology</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessler, Adam J.</creatorcontrib><creatorcontrib>Chen, Ya-Jou</creatorcontrib><creatorcontrib>Waite, David W.</creatorcontrib><creatorcontrib>Hutchinson, Tess</creatorcontrib><creatorcontrib>Koh, Sharlynn</creatorcontrib><creatorcontrib>Popa, M. Elena</creatorcontrib><creatorcontrib>Beardall, John</creatorcontrib><creatorcontrib>Hugenholtz, Philip</creatorcontrib><creatorcontrib>Cook, Perran L. M.</creatorcontrib><creatorcontrib>Greening, Chris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, Adam J.</au><au>Chen, Ya-Jou</au><au>Waite, David W.</au><au>Hutchinson, Tess</au><au>Koh, Sharlynn</au><au>Popa, M. Elena</au><au>Beardall, John</au><au>Hugenholtz, Philip</au><au>Cook, Perran L. M.</au><au>Greening, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>4</volume><issue>6</issue><spage>1014</spage><epage>1023</epage><pages>1014-1023</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic–anoxic transitions. Here, we show that molecular hydrogen (H
2
) accumulates in silicate sand sediments due to decoupling of bacterial fermentation and respiration processes following anoxia. In situ measurements show that H
2
is 250-fold supersaturated in the water column overlying these sediments and has an isotopic composition consistent with fermentative production. Genome-resolved shotgun metagenomic profiling suggests that the sands harbour diverse and specialized microbial communities with a high abundance of [NiFe]-hydrogenase genes. Hydrogenase profiles predict that H
2
is primarily produced by facultatively fermentative bacteria, including the dominant gammaproteobacterial family Woeseiaceae, and can be consumed by aerobic respiratory bacteria. Flow-through reactor and slurry experiments consistently demonstrate that H
2
is rapidly produced by fermentation following anoxia, immediately consumed by aerobic respiration following reaeration and consumed by sulfate reduction only during prolonged anoxia. Hydrogenotrophic sulfur, nitrate and nitrite reducers were also detected, although contrary to previous hypotheses there was limited capacity for microalgal fermentation. In combination, these experiments confirm that fermentation dominates anoxic carbon mineralization in these permeable sediments and, in contrast to the case in cohesive sediments, is largely uncoupled from anaerobic respiration. Frequent changes in oxygen availability in these sediments may have selected for metabolically flexible bacteria while excluding strict anaerobes.
In sandy, permeable sediments, which frequently cycle between oxic and anoxic conditions, there is an uncoupling of fermentative and respiratory bacteria, and bacterial, rather than microalgal, fermentation drives the accumulation of hydrogen in this environment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30858573</pmid><doi>10.1038/s41564-019-0391-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7616-0594</orcidid><orcidid>https://orcid.org/0000-0002-0444-3488</orcidid><orcidid>https://orcid.org/0000-0003-4753-9292</orcidid><orcidid>https://orcid.org/0000-0001-5386-7925</orcidid><orcidid>https://orcid.org/0000-0001-7684-446X</orcidid><orcidid>https://orcid.org/0000-0001-7957-0329</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-5276 |
ispartof | Nature microbiology, 2019-06, Vol.4 (6), p.1014-1023 |
issn | 2058-5276 2058-5276 |
language | eng |
recordid | cdi_proquest_miscellaneous_2190495961 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 45/23 631/326/2565/855 704/47 Aerobic respiration Anaerobic respiration Anoxia Bacteria Bacteria - genetics Bacteria - metabolism Bacteria, Anaerobic - metabolism Biomedical and Life Sciences Carbon Cycle Fermentation Gammaproteobacteria - metabolism Genomes Geologic Sediments - microbiology Hydrogen - metabolism Hydrogenase Hydrogenase - classification Hydrogenase - genetics Hypoxia Infectious Diseases Life Sciences Medical Microbiology Metagenomics Microbiology Microbiota Mineralization Nitrates - metabolism Nitrites - metabolism Oceans and Seas Oxidation-Reduction Parasitology Respiration RNA, Ribosomal, 16S Sediments Slurries Sulfate reduction Sulfates - metabolism Sulfur Virology Water column |
title | Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20fermentation%20and%20respiration%20processes%20are%20uncoupled%20in%20anoxic%20permeable%20sediments&rft.jtitle=Nature%20microbiology&rft.au=Kessler,%20Adam%20J.&rft.date=2019-06-01&rft.volume=4&rft.issue=6&rft.spage=1014&rft.epage=1023&rft.pages=1014-1023&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-019-0391-z&rft_dat=%3Cproquest_cross%3E2229261517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229261517&rft_id=info:pmid/30858573&rfr_iscdi=true |