Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network
•A novel deep learning based framework was proposed for multiclass retinal fluid segmentation and detection in OCT images. A fully convolutional neural network was applied for fluid segmentation followed by a random forest classifier to improve the accuracy.•Additional pixel-wise spatial information...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2019-05, Vol.54, p.100-110 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | |
container_start_page | 100 |
container_title | Medical image analysis |
container_volume | 54 |
creator | Lu, Donghuan Heisler, Morgan Lee, Sieun Ding, Gavin Weiguang Navajas, Eduardo Sarunic, Marinko V. Beg, Mirza Faisal |
description | •A novel deep learning based framework was proposed for multiclass retinal fluid segmentation and detection in OCT images. A fully convolutional neural network was applied for fluid segmentation followed by a random forest classifier to improve the accuracy.•Additional pixel-wise spatial information from layer segmentation was introduced for fully convolutional neural network based fluid segmentation followed by random forest classification to rule out false positive regions and determine the fluid presence in each volume.•The proposed framework won the first place in the Retinal OCT Fluid Challenge in the 2017 Medical Image Computing and Computer Assisted InterventionsConference (MICCAI) on both segmentation and detection tasks.
As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. These images can help reveal disease-related alterations below the surface of the retina, such as the presence of edema, or accumulation of fluid which can distort vision, and are an indication of disruptions in the vasculature of the retina. In this paper, a new framework is proposed for multiclass fluid segmentation and detection in the retinal OCT images. Based on the intensity of OCT images and retinal layer segmentations provided by a graph-cut algorithm, a fully convolutional neural network was trained to recognize and label the fluid pixels. Random forest classification was performed on the segmented fluid regions to detect and reject the falsely labeled fluid regions. The proposed framework won the first place in the MICCAI RETOUCH challenge in 2017 on both the segmentation performance (mean Dice: 0.7667) and the detection performance (mean AUC: 1.00) tasks.
[Display omitted] |
doi_str_mv | 10.1016/j.media.2019.02.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2190490665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841519300167</els_id><sourcerecordid>2244144164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e8ad7b5f12d9707ebdf5e4d056d6d9e85b62536fd9d1b15c38207d17ae79f16f3</originalsourceid><addsrcrecordid>eNp9kc-O1SAUxhujcf7oE5gYEjduWoECbRcuzIyjJpO40TWh5XCHK4UKZcx9FN9Weu84CxcmJAfC7_sOnK-qXhHcEEzEu30zg7aqoZgMDaYNJuRJdU5aQeqe0fbp457ws-oipT3GuGMMP6_OWtxzwTg_r35fAyy1AxW99Ts0qgQazdmtdnIqJRRhtV45ZFy2GiXYzeBXtdrgkfIaaVhhOp6sR2EpqsJO4Q4i-AnQGuawi2q5OyA7qx0klNPWRiGTnTsU0t8HlzeDovOQ47Gsv0L88aJ6ZpRL8PKhXlbfbz5-u_pc33799OXqw209tX231tAr3Y3cEKqHDncwasOBacyFFnqAno-C8lYYPWgyEl5EFHeadAq6wRBh2svq7cl3ieFnhrTK2aYJnFMeQk6SkgGzAQvBC_rmH3QfcixPLxRljJQlWKHaEzXFkFIEI5dYfh8PkmC5JSf38pic3JKTmMqSXFG9fvDOY7l91PyNqgDvTwCUYdxbiDJNdpuytrFkIHWw_23wB0JErpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244144164</pqid></control><display><type>article</type><title>Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lu, Donghuan ; Heisler, Morgan ; Lee, Sieun ; Ding, Gavin Weiguang ; Navajas, Eduardo ; Sarunic, Marinko V. ; Beg, Mirza Faisal</creator><creatorcontrib>Lu, Donghuan ; Heisler, Morgan ; Lee, Sieun ; Ding, Gavin Weiguang ; Navajas, Eduardo ; Sarunic, Marinko V. ; Beg, Mirza Faisal</creatorcontrib><description>•A novel deep learning based framework was proposed for multiclass retinal fluid segmentation and detection in OCT images. A fully convolutional neural network was applied for fluid segmentation followed by a random forest classifier to improve the accuracy.•Additional pixel-wise spatial information from layer segmentation was introduced for fully convolutional neural network based fluid segmentation followed by random forest classification to rule out false positive regions and determine the fluid presence in each volume.•The proposed framework won the first place in the Retinal OCT Fluid Challenge in the 2017 Medical Image Computing and Computer Assisted InterventionsConference (MICCAI) on both segmentation and detection tasks.
As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. These images can help reveal disease-related alterations below the surface of the retina, such as the presence of edema, or accumulation of fluid which can distort vision, and are an indication of disruptions in the vasculature of the retina. In this paper, a new framework is proposed for multiclass fluid segmentation and detection in the retinal OCT images. Based on the intensity of OCT images and retinal layer segmentations provided by a graph-cut algorithm, a fully convolutional neural network was trained to recognize and label the fluid pixels. Random forest classification was performed on the segmented fluid regions to detect and reject the falsely labeled fluid regions. The proposed framework won the first place in the MICCAI RETOUCH challenge in 2017 on both the segmentation performance (mean Dice: 0.7667) and the detection performance (mean AUC: 1.00) tasks.
[Display omitted]</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2019.02.011</identifier><identifier>PMID: 30856455</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial neural networks ; Deep learning ; Edema ; Fully convolutional network ; Image detection ; Image processing ; Image segmentation ; Medical imaging ; Multiclass segmentation and detection ; Neural networks ; Optical Coherence Tomography ; Retina ; Retinal fluid ; Tomography</subject><ispartof>Medical image analysis, 2019-05, Vol.54, p.100-110</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e8ad7b5f12d9707ebdf5e4d056d6d9e85b62536fd9d1b15c38207d17ae79f16f3</citedby><cites>FETCH-LOGICAL-c387t-e8ad7b5f12d9707ebdf5e4d056d6d9e85b62536fd9d1b15c38207d17ae79f16f3</cites><orcidid>0000-0002-9959-6005 ; 0000-0002-8399-7410 ; 0000-0001-6706-8630 ; 0000-0002-5856-6811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2019.02.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30856455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Donghuan</creatorcontrib><creatorcontrib>Heisler, Morgan</creatorcontrib><creatorcontrib>Lee, Sieun</creatorcontrib><creatorcontrib>Ding, Gavin Weiguang</creatorcontrib><creatorcontrib>Navajas, Eduardo</creatorcontrib><creatorcontrib>Sarunic, Marinko V.</creatorcontrib><creatorcontrib>Beg, Mirza Faisal</creatorcontrib><title>Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•A novel deep learning based framework was proposed for multiclass retinal fluid segmentation and detection in OCT images. A fully convolutional neural network was applied for fluid segmentation followed by a random forest classifier to improve the accuracy.•Additional pixel-wise spatial information from layer segmentation was introduced for fully convolutional neural network based fluid segmentation followed by random forest classification to rule out false positive regions and determine the fluid presence in each volume.•The proposed framework won the first place in the Retinal OCT Fluid Challenge in the 2017 Medical Image Computing and Computer Assisted InterventionsConference (MICCAI) on both segmentation and detection tasks.
As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. These images can help reveal disease-related alterations below the surface of the retina, such as the presence of edema, or accumulation of fluid which can distort vision, and are an indication of disruptions in the vasculature of the retina. In this paper, a new framework is proposed for multiclass fluid segmentation and detection in the retinal OCT images. Based on the intensity of OCT images and retinal layer segmentations provided by a graph-cut algorithm, a fully convolutional neural network was trained to recognize and label the fluid pixels. Random forest classification was performed on the segmented fluid regions to detect and reject the falsely labeled fluid regions. The proposed framework won the first place in the MICCAI RETOUCH challenge in 2017 on both the segmentation performance (mean Dice: 0.7667) and the detection performance (mean AUC: 1.00) tasks.
[Display omitted]</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Edema</subject><subject>Fully convolutional network</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>Multiclass segmentation and detection</subject><subject>Neural networks</subject><subject>Optical Coherence Tomography</subject><subject>Retina</subject><subject>Retinal fluid</subject><subject>Tomography</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc-O1SAUxhujcf7oE5gYEjduWoECbRcuzIyjJpO40TWh5XCHK4UKZcx9FN9Weu84CxcmJAfC7_sOnK-qXhHcEEzEu30zg7aqoZgMDaYNJuRJdU5aQeqe0fbp457ws-oipT3GuGMMP6_OWtxzwTg_r35fAyy1AxW99Ts0qgQazdmtdnIqJRRhtV45ZFy2GiXYzeBXtdrgkfIaaVhhOp6sR2EpqsJO4Q4i-AnQGuawi2q5OyA7qx0klNPWRiGTnTsU0t8HlzeDovOQ47Gsv0L88aJ6ZpRL8PKhXlbfbz5-u_pc33799OXqw209tX231tAr3Y3cEKqHDncwasOBacyFFnqAno-C8lYYPWgyEl5EFHeadAq6wRBh2svq7cl3ieFnhrTK2aYJnFMeQk6SkgGzAQvBC_rmH3QfcixPLxRljJQlWKHaEzXFkFIEI5dYfh8PkmC5JSf38pic3JKTmMqSXFG9fvDOY7l91PyNqgDvTwCUYdxbiDJNdpuytrFkIHWw_23wB0JErpY</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Lu, Donghuan</creator><creator>Heisler, Morgan</creator><creator>Lee, Sieun</creator><creator>Ding, Gavin Weiguang</creator><creator>Navajas, Eduardo</creator><creator>Sarunic, Marinko V.</creator><creator>Beg, Mirza Faisal</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9959-6005</orcidid><orcidid>https://orcid.org/0000-0002-8399-7410</orcidid><orcidid>https://orcid.org/0000-0001-6706-8630</orcidid><orcidid>https://orcid.org/0000-0002-5856-6811</orcidid></search><sort><creationdate>201905</creationdate><title>Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network</title><author>Lu, Donghuan ; Heisler, Morgan ; Lee, Sieun ; Ding, Gavin Weiguang ; Navajas, Eduardo ; Sarunic, Marinko V. ; Beg, Mirza Faisal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e8ad7b5f12d9707ebdf5e4d056d6d9e85b62536fd9d1b15c38207d17ae79f16f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Edema</topic><topic>Fully convolutional network</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>Multiclass segmentation and detection</topic><topic>Neural networks</topic><topic>Optical Coherence Tomography</topic><topic>Retina</topic><topic>Retinal fluid</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Donghuan</creatorcontrib><creatorcontrib>Heisler, Morgan</creatorcontrib><creatorcontrib>Lee, Sieun</creatorcontrib><creatorcontrib>Ding, Gavin Weiguang</creatorcontrib><creatorcontrib>Navajas, Eduardo</creatorcontrib><creatorcontrib>Sarunic, Marinko V.</creatorcontrib><creatorcontrib>Beg, Mirza Faisal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Donghuan</au><au>Heisler, Morgan</au><au>Lee, Sieun</au><au>Ding, Gavin Weiguang</au><au>Navajas, Eduardo</au><au>Sarunic, Marinko V.</au><au>Beg, Mirza Faisal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2019-05</date><risdate>2019</risdate><volume>54</volume><spage>100</spage><epage>110</epage><pages>100-110</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>•A novel deep learning based framework was proposed for multiclass retinal fluid segmentation and detection in OCT images. A fully convolutional neural network was applied for fluid segmentation followed by a random forest classifier to improve the accuracy.•Additional pixel-wise spatial information from layer segmentation was introduced for fully convolutional neural network based fluid segmentation followed by random forest classification to rule out false positive regions and determine the fluid presence in each volume.•The proposed framework won the first place in the Retinal OCT Fluid Challenge in the 2017 Medical Image Computing and Computer Assisted InterventionsConference (MICCAI) on both segmentation and detection tasks.
As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. These images can help reveal disease-related alterations below the surface of the retina, such as the presence of edema, or accumulation of fluid which can distort vision, and are an indication of disruptions in the vasculature of the retina. In this paper, a new framework is proposed for multiclass fluid segmentation and detection in the retinal OCT images. Based on the intensity of OCT images and retinal layer segmentations provided by a graph-cut algorithm, a fully convolutional neural network was trained to recognize and label the fluid pixels. Random forest classification was performed on the segmented fluid regions to detect and reject the falsely labeled fluid regions. The proposed framework won the first place in the MICCAI RETOUCH challenge in 2017 on both the segmentation performance (mean Dice: 0.7667) and the detection performance (mean AUC: 1.00) tasks.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30856455</pmid><doi>10.1016/j.media.2019.02.011</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9959-6005</orcidid><orcidid>https://orcid.org/0000-0002-8399-7410</orcidid><orcidid>https://orcid.org/0000-0001-6706-8630</orcidid><orcidid>https://orcid.org/0000-0002-5856-6811</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2019-05, Vol.54, p.100-110 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_2190490665 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Artificial neural networks Deep learning Edema Fully convolutional network Image detection Image processing Image segmentation Medical imaging Multiclass segmentation and detection Neural networks Optical Coherence Tomography Retina Retinal fluid Tomography |
title | Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T00%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-learning%20based%20multiclass%20retinal%20fluid%20segmentation%20and%20detection%20in%20optical%20coherence%20tomography%20images%20using%20a%20fully%20convolutional%20neural%20network&rft.jtitle=Medical%20image%20analysis&rft.au=Lu,%20Donghuan&rft.date=2019-05&rft.volume=54&rft.spage=100&rft.epage=110&rft.pages=100-110&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2019.02.011&rft_dat=%3Cproquest_cross%3E2244144164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244144164&rft_id=info:pmid/30856455&rft_els_id=S1361841519300167&rfr_iscdi=true |