Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network

•A novel deep learning based framework was proposed for multiclass retinal fluid segmentation and detection in OCT images. A fully convolutional neural network was applied for fluid segmentation followed by a random forest classifier to improve the accuracy.•Additional pixel-wise spatial information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2019-05, Vol.54, p.100-110
Hauptverfasser: Lu, Donghuan, Heisler, Morgan, Lee, Sieun, Ding, Gavin Weiguang, Navajas, Eduardo, Sarunic, Marinko V., Beg, Mirza Faisal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 100
container_title Medical image analysis
container_volume 54
creator Lu, Donghuan
Heisler, Morgan
Lee, Sieun
Ding, Gavin Weiguang
Navajas, Eduardo
Sarunic, Marinko V.
Beg, Mirza Faisal
description •A novel deep learning based framework was proposed for multiclass retinal fluid segmentation and detection in OCT images. A fully convolutional neural network was applied for fluid segmentation followed by a random forest classifier to improve the accuracy.•Additional pixel-wise spatial information from layer segmentation was introduced for fully convolutional neural network based fluid segmentation followed by random forest classification to rule out false positive regions and determine the fluid presence in each volume.•The proposed framework won the first place in the Retinal OCT Fluid Challenge in the 2017 Medical Image Computing and Computer Assisted InterventionsConference (MICCAI) on both segmentation and detection tasks. As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. These images can help reveal disease-related alterations below the surface of the retina, such as the presence of edema, or accumulation of fluid which can distort vision, and are an indication of disruptions in the vasculature of the retina. In this paper, a new framework is proposed for multiclass fluid segmentation and detection in the retinal OCT images. Based on the intensity of OCT images and retinal layer segmentations provided by a graph-cut algorithm, a fully convolutional neural network was trained to recognize and label the fluid pixels. Random forest classification was performed on the segmented fluid regions to detect and reject the falsely labeled fluid regions. The proposed framework won the first place in the MICCAI RETOUCH challenge in 2017 on both the segmentation performance (mean Dice: 0.7667) and the detection performance (mean AUC: 1.00) tasks. [Display omitted]
doi_str_mv 10.1016/j.media.2019.02.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2190490665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841519300167</els_id><sourcerecordid>2244144164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e8ad7b5f12d9707ebdf5e4d056d6d9e85b62536fd9d1b15c38207d17ae79f16f3</originalsourceid><addsrcrecordid>eNp9kc-O1SAUxhujcf7oE5gYEjduWoECbRcuzIyjJpO40TWh5XCHK4UKZcx9FN9Weu84CxcmJAfC7_sOnK-qXhHcEEzEu30zg7aqoZgMDaYNJuRJdU5aQeqe0fbp457ws-oipT3GuGMMP6_OWtxzwTg_r35fAyy1AxW99Ts0qgQazdmtdnIqJRRhtV45ZFy2GiXYzeBXtdrgkfIaaVhhOp6sR2EpqsJO4Q4i-AnQGuawi2q5OyA7qx0klNPWRiGTnTsU0t8HlzeDovOQ47Gsv0L88aJ6ZpRL8PKhXlbfbz5-u_pc33799OXqw209tX231tAr3Y3cEKqHDncwasOBacyFFnqAno-C8lYYPWgyEl5EFHeadAq6wRBh2svq7cl3ieFnhrTK2aYJnFMeQk6SkgGzAQvBC_rmH3QfcixPLxRljJQlWKHaEzXFkFIEI5dYfh8PkmC5JSf38pic3JKTmMqSXFG9fvDOY7l91PyNqgDvTwCUYdxbiDJNdpuytrFkIHWw_23wB0JErpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244144164</pqid></control><display><type>article</type><title>Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lu, Donghuan ; Heisler, Morgan ; Lee, Sieun ; Ding, Gavin Weiguang ; Navajas, Eduardo ; Sarunic, Marinko V. ; Beg, Mirza Faisal</creator><creatorcontrib>Lu, Donghuan ; Heisler, Morgan ; Lee, Sieun ; Ding, Gavin Weiguang ; Navajas, Eduardo ; Sarunic, Marinko V. ; Beg, Mirza Faisal</creatorcontrib><description>•A novel deep learning based framework was proposed for multiclass retinal fluid segmentation and detection in OCT images. A fully convolutional neural network was applied for fluid segmentation followed by a random forest classifier to improve the accuracy.•Additional pixel-wise spatial information from layer segmentation was introduced for fully convolutional neural network based fluid segmentation followed by random forest classification to rule out false positive regions and determine the fluid presence in each volume.•The proposed framework won the first place in the Retinal OCT Fluid Challenge in the 2017 Medical Image Computing and Computer Assisted InterventionsConference (MICCAI) on both segmentation and detection tasks. As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. These images can help reveal disease-related alterations below the surface of the retina, such as the presence of edema, or accumulation of fluid which can distort vision, and are an indication of disruptions in the vasculature of the retina. In this paper, a new framework is proposed for multiclass fluid segmentation and detection in the retinal OCT images. Based on the intensity of OCT images and retinal layer segmentations provided by a graph-cut algorithm, a fully convolutional neural network was trained to recognize and label the fluid pixels. Random forest classification was performed on the segmented fluid regions to detect and reject the falsely labeled fluid regions. The proposed framework won the first place in the MICCAI RETOUCH challenge in 2017 on both the segmentation performance (mean Dice: 0.7667) and the detection performance (mean AUC: 1.00) tasks. [Display omitted]</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2019.02.011</identifier><identifier>PMID: 30856455</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial neural networks ; Deep learning ; Edema ; Fully convolutional network ; Image detection ; Image processing ; Image segmentation ; Medical imaging ; Multiclass segmentation and detection ; Neural networks ; Optical Coherence Tomography ; Retina ; Retinal fluid ; Tomography</subject><ispartof>Medical image analysis, 2019-05, Vol.54, p.100-110</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e8ad7b5f12d9707ebdf5e4d056d6d9e85b62536fd9d1b15c38207d17ae79f16f3</citedby><cites>FETCH-LOGICAL-c387t-e8ad7b5f12d9707ebdf5e4d056d6d9e85b62536fd9d1b15c38207d17ae79f16f3</cites><orcidid>0000-0002-9959-6005 ; 0000-0002-8399-7410 ; 0000-0001-6706-8630 ; 0000-0002-5856-6811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2019.02.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30856455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Donghuan</creatorcontrib><creatorcontrib>Heisler, Morgan</creatorcontrib><creatorcontrib>Lee, Sieun</creatorcontrib><creatorcontrib>Ding, Gavin Weiguang</creatorcontrib><creatorcontrib>Navajas, Eduardo</creatorcontrib><creatorcontrib>Sarunic, Marinko V.</creatorcontrib><creatorcontrib>Beg, Mirza Faisal</creatorcontrib><title>Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•A novel deep learning based framework was proposed for multiclass retinal fluid segmentation and detection in OCT images. A fully convolutional neural network was applied for fluid segmentation followed by a random forest classifier to improve the accuracy.•Additional pixel-wise spatial information from layer segmentation was introduced for fully convolutional neural network based fluid segmentation followed by random forest classification to rule out false positive regions and determine the fluid presence in each volume.•The proposed framework won the first place in the Retinal OCT Fluid Challenge in the 2017 Medical Image Computing and Computer Assisted InterventionsConference (MICCAI) on both segmentation and detection tasks. As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. These images can help reveal disease-related alterations below the surface of the retina, such as the presence of edema, or accumulation of fluid which can distort vision, and are an indication of disruptions in the vasculature of the retina. In this paper, a new framework is proposed for multiclass fluid segmentation and detection in the retinal OCT images. Based on the intensity of OCT images and retinal layer segmentations provided by a graph-cut algorithm, a fully convolutional neural network was trained to recognize and label the fluid pixels. Random forest classification was performed on the segmented fluid regions to detect and reject the falsely labeled fluid regions. The proposed framework won the first place in the MICCAI RETOUCH challenge in 2017 on both the segmentation performance (mean Dice: 0.7667) and the detection performance (mean AUC: 1.00) tasks. [Display omitted]</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Edema</subject><subject>Fully convolutional network</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>Multiclass segmentation and detection</subject><subject>Neural networks</subject><subject>Optical Coherence Tomography</subject><subject>Retina</subject><subject>Retinal fluid</subject><subject>Tomography</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc-O1SAUxhujcf7oE5gYEjduWoECbRcuzIyjJpO40TWh5XCHK4UKZcx9FN9Weu84CxcmJAfC7_sOnK-qXhHcEEzEu30zg7aqoZgMDaYNJuRJdU5aQeqe0fbp457ws-oipT3GuGMMP6_OWtxzwTg_r35fAyy1AxW99Ts0qgQazdmtdnIqJRRhtV45ZFy2GiXYzeBXtdrgkfIaaVhhOp6sR2EpqsJO4Q4i-AnQGuawi2q5OyA7qx0klNPWRiGTnTsU0t8HlzeDovOQ47Gsv0L88aJ6ZpRL8PKhXlbfbz5-u_pc33799OXqw209tX231tAr3Y3cEKqHDncwasOBacyFFnqAno-C8lYYPWgyEl5EFHeadAq6wRBh2svq7cl3ieFnhrTK2aYJnFMeQk6SkgGzAQvBC_rmH3QfcixPLxRljJQlWKHaEzXFkFIEI5dYfh8PkmC5JSf38pic3JKTmMqSXFG9fvDOY7l91PyNqgDvTwCUYdxbiDJNdpuytrFkIHWw_23wB0JErpY</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Lu, Donghuan</creator><creator>Heisler, Morgan</creator><creator>Lee, Sieun</creator><creator>Ding, Gavin Weiguang</creator><creator>Navajas, Eduardo</creator><creator>Sarunic, Marinko V.</creator><creator>Beg, Mirza Faisal</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9959-6005</orcidid><orcidid>https://orcid.org/0000-0002-8399-7410</orcidid><orcidid>https://orcid.org/0000-0001-6706-8630</orcidid><orcidid>https://orcid.org/0000-0002-5856-6811</orcidid></search><sort><creationdate>201905</creationdate><title>Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network</title><author>Lu, Donghuan ; Heisler, Morgan ; Lee, Sieun ; Ding, Gavin Weiguang ; Navajas, Eduardo ; Sarunic, Marinko V. ; Beg, Mirza Faisal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e8ad7b5f12d9707ebdf5e4d056d6d9e85b62536fd9d1b15c38207d17ae79f16f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Edema</topic><topic>Fully convolutional network</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>Multiclass segmentation and detection</topic><topic>Neural networks</topic><topic>Optical Coherence Tomography</topic><topic>Retina</topic><topic>Retinal fluid</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Donghuan</creatorcontrib><creatorcontrib>Heisler, Morgan</creatorcontrib><creatorcontrib>Lee, Sieun</creatorcontrib><creatorcontrib>Ding, Gavin Weiguang</creatorcontrib><creatorcontrib>Navajas, Eduardo</creatorcontrib><creatorcontrib>Sarunic, Marinko V.</creatorcontrib><creatorcontrib>Beg, Mirza Faisal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Donghuan</au><au>Heisler, Morgan</au><au>Lee, Sieun</au><au>Ding, Gavin Weiguang</au><au>Navajas, Eduardo</au><au>Sarunic, Marinko V.</au><au>Beg, Mirza Faisal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2019-05</date><risdate>2019</risdate><volume>54</volume><spage>100</spage><epage>110</epage><pages>100-110</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>•A novel deep learning based framework was proposed for multiclass retinal fluid segmentation and detection in OCT images. A fully convolutional neural network was applied for fluid segmentation followed by a random forest classifier to improve the accuracy.•Additional pixel-wise spatial information from layer segmentation was introduced for fully convolutional neural network based fluid segmentation followed by random forest classification to rule out false positive regions and determine the fluid presence in each volume.•The proposed framework won the first place in the Retinal OCT Fluid Challenge in the 2017 Medical Image Computing and Computer Assisted InterventionsConference (MICCAI) on both segmentation and detection tasks. As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. These images can help reveal disease-related alterations below the surface of the retina, such as the presence of edema, or accumulation of fluid which can distort vision, and are an indication of disruptions in the vasculature of the retina. In this paper, a new framework is proposed for multiclass fluid segmentation and detection in the retinal OCT images. Based on the intensity of OCT images and retinal layer segmentations provided by a graph-cut algorithm, a fully convolutional neural network was trained to recognize and label the fluid pixels. Random forest classification was performed on the segmented fluid regions to detect and reject the falsely labeled fluid regions. The proposed framework won the first place in the MICCAI RETOUCH challenge in 2017 on both the segmentation performance (mean Dice: 0.7667) and the detection performance (mean AUC: 1.00) tasks. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30856455</pmid><doi>10.1016/j.media.2019.02.011</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9959-6005</orcidid><orcidid>https://orcid.org/0000-0002-8399-7410</orcidid><orcidid>https://orcid.org/0000-0001-6706-8630</orcidid><orcidid>https://orcid.org/0000-0002-5856-6811</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2019-05, Vol.54, p.100-110
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_2190490665
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Artificial neural networks
Deep learning
Edema
Fully convolutional network
Image detection
Image processing
Image segmentation
Medical imaging
Multiclass segmentation and detection
Neural networks
Optical Coherence Tomography
Retina
Retinal fluid
Tomography
title Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T00%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-learning%20based%20multiclass%20retinal%20fluid%20segmentation%20and%20detection%20in%20optical%20coherence%20tomography%20images%20using%20a%20fully%20convolutional%20neural%20network&rft.jtitle=Medical%20image%20analysis&rft.au=Lu,%20Donghuan&rft.date=2019-05&rft.volume=54&rft.spage=100&rft.epage=110&rft.pages=100-110&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2019.02.011&rft_dat=%3Cproquest_cross%3E2244144164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244144164&rft_id=info:pmid/30856455&rft_els_id=S1361841519300167&rfr_iscdi=true