Halide Ion Microhydration: Structure, Energetics, and Spectroscopy of Small Halide–Water Clusters

Replica exchange molecular dynamics simulations and vibrational spectroscopy calculations are performed using halide–water many-body potential energy functions to provide a bottom-up analysis of the structures, energetics, and hydrogen-bonding arrangements in X–(H2O) n (n = 3–6) clusters, with X = F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2019-04, Vol.123 (13), p.2843-2852
Hauptverfasser: Bajaj, Pushp, Riera, Marc, Lin, Jason K, Mendoza Montijo, Yaira E, Gazca, Jessica, Paesani, Francesco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2852
container_issue 13
container_start_page 2843
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 123
creator Bajaj, Pushp
Riera, Marc
Lin, Jason K
Mendoza Montijo, Yaira E
Gazca, Jessica
Paesani, Francesco
description Replica exchange molecular dynamics simulations and vibrational spectroscopy calculations are performed using halide–water many-body potential energy functions to provide a bottom-up analysis of the structures, energetics, and hydrogen-bonding arrangements in X–(H2O) n (n = 3–6) clusters, with X = F, Cl, Br, and I. Independently of the cluster size, it is found that all four halides prefer surface-type structures in which they occupy one of the vertices in the underlying three-dimensional hydrogen-bond networks. For fluoride–water clusters, this is in contrast to previous reports suggesting that fluoride prefers interior-type arrangements, where the ion is fully hydrated. These differences can be ascribed to the variability in how various molecular models are capable of reproducing the subtle interplay between halide–water and water–water interactions. Our results thus emphasize the importance of a correct representation of individual many-body contributions to the molecular interactions for a quantitative description of halide ion hydration.
doi_str_mv 10.1021/acs.jpca.9b00816
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2190484045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190484045</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-2a556606040a813370d69d9708c35b73790087236cf621b9f41da1ee555655e43</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EoqWwMyGPDE15jmMnYUNVoZVADAUxRo7jQKokDrYzdOMf-EO-BJcUNqb3hnuudA9C5wRmBEJyJaSdbTopZmkOkBB-gMaEhRCwkLBD_0OSBozTdIROrN0AAKFhdIxGFBIW0yQeI7kUdVUovNItfqik0W_bwghX6fYar53ppeuNmuJFq8yrcpW0UyzaAq87JZ3RVupui3WJ142oazx0fX18vginDJ7XvfXXnqKjUtRWne3vBD3fLp7my-D-8W41v7kPBKXcBaFgjHPgEIFICKUxFDwt0hgSSVke0zj1G-OQclnykORpGZFCEKWYxxhTEZ2gy6G3M_q9V9ZlTWWlqmvRKt3bLCQpREkEEfNRGKJ-sbVGlVlnqkaYbUYg26nNvNpspzbbq_XIxb69zxtV_AG_Ln1gOgR-UN2b1o_9v-8bFYOExQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190484045</pqid></control><display><type>article</type><title>Halide Ion Microhydration: Structure, Energetics, and Spectroscopy of Small Halide–Water Clusters</title><source>American Chemical Society Journals</source><creator>Bajaj, Pushp ; Riera, Marc ; Lin, Jason K ; Mendoza Montijo, Yaira E ; Gazca, Jessica ; Paesani, Francesco</creator><creatorcontrib>Bajaj, Pushp ; Riera, Marc ; Lin, Jason K ; Mendoza Montijo, Yaira E ; Gazca, Jessica ; Paesani, Francesco</creatorcontrib><description>Replica exchange molecular dynamics simulations and vibrational spectroscopy calculations are performed using halide–water many-body potential energy functions to provide a bottom-up analysis of the structures, energetics, and hydrogen-bonding arrangements in X–(H2O) n (n = 3–6) clusters, with X = F, Cl, Br, and I. Independently of the cluster size, it is found that all four halides prefer surface-type structures in which they occupy one of the vertices in the underlying three-dimensional hydrogen-bond networks. For fluoride–water clusters, this is in contrast to previous reports suggesting that fluoride prefers interior-type arrangements, where the ion is fully hydrated. These differences can be ascribed to the variability in how various molecular models are capable of reproducing the subtle interplay between halide–water and water–water interactions. Our results thus emphasize the importance of a correct representation of individual many-body contributions to the molecular interactions for a quantitative description of halide ion hydration.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.9b00816</identifier><identifier>PMID: 30857387</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2019-04, Vol.123 (13), p.2843-2852</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-2a556606040a813370d69d9708c35b73790087236cf621b9f41da1ee555655e43</citedby><cites>FETCH-LOGICAL-a336t-2a556606040a813370d69d9708c35b73790087236cf621b9f41da1ee555655e43</cites><orcidid>0000-0002-4451-1203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.9b00816$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.9b00816$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30857387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bajaj, Pushp</creatorcontrib><creatorcontrib>Riera, Marc</creatorcontrib><creatorcontrib>Lin, Jason K</creatorcontrib><creatorcontrib>Mendoza Montijo, Yaira E</creatorcontrib><creatorcontrib>Gazca, Jessica</creatorcontrib><creatorcontrib>Paesani, Francesco</creatorcontrib><title>Halide Ion Microhydration: Structure, Energetics, and Spectroscopy of Small Halide–Water Clusters</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Replica exchange molecular dynamics simulations and vibrational spectroscopy calculations are performed using halide–water many-body potential energy functions to provide a bottom-up analysis of the structures, energetics, and hydrogen-bonding arrangements in X–(H2O) n (n = 3–6) clusters, with X = F, Cl, Br, and I. Independently of the cluster size, it is found that all four halides prefer surface-type structures in which they occupy one of the vertices in the underlying three-dimensional hydrogen-bond networks. For fluoride–water clusters, this is in contrast to previous reports suggesting that fluoride prefers interior-type arrangements, where the ion is fully hydrated. These differences can be ascribed to the variability in how various molecular models are capable of reproducing the subtle interplay between halide–water and water–water interactions. Our results thus emphasize the importance of a correct representation of individual many-body contributions to the molecular interactions for a quantitative description of halide ion hydration.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EoqWwMyGPDE15jmMnYUNVoZVADAUxRo7jQKokDrYzdOMf-EO-BJcUNqb3hnuudA9C5wRmBEJyJaSdbTopZmkOkBB-gMaEhRCwkLBD_0OSBozTdIROrN0AAKFhdIxGFBIW0yQeI7kUdVUovNItfqik0W_bwghX6fYar53ppeuNmuJFq8yrcpW0UyzaAq87JZ3RVupui3WJ142oazx0fX18vginDJ7XvfXXnqKjUtRWne3vBD3fLp7my-D-8W41v7kPBKXcBaFgjHPgEIFICKUxFDwt0hgSSVke0zj1G-OQclnykORpGZFCEKWYxxhTEZ2gy6G3M_q9V9ZlTWWlqmvRKt3bLCQpREkEEfNRGKJ-sbVGlVlnqkaYbUYg26nNvNpspzbbq_XIxb69zxtV_AG_Ln1gOgR-UN2b1o_9v-8bFYOExQ</recordid><startdate>20190404</startdate><enddate>20190404</enddate><creator>Bajaj, Pushp</creator><creator>Riera, Marc</creator><creator>Lin, Jason K</creator><creator>Mendoza Montijo, Yaira E</creator><creator>Gazca, Jessica</creator><creator>Paesani, Francesco</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4451-1203</orcidid></search><sort><creationdate>20190404</creationdate><title>Halide Ion Microhydration: Structure, Energetics, and Spectroscopy of Small Halide–Water Clusters</title><author>Bajaj, Pushp ; Riera, Marc ; Lin, Jason K ; Mendoza Montijo, Yaira E ; Gazca, Jessica ; Paesani, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-2a556606040a813370d69d9708c35b73790087236cf621b9f41da1ee555655e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bajaj, Pushp</creatorcontrib><creatorcontrib>Riera, Marc</creatorcontrib><creatorcontrib>Lin, Jason K</creatorcontrib><creatorcontrib>Mendoza Montijo, Yaira E</creatorcontrib><creatorcontrib>Gazca, Jessica</creatorcontrib><creatorcontrib>Paesani, Francesco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bajaj, Pushp</au><au>Riera, Marc</au><au>Lin, Jason K</au><au>Mendoza Montijo, Yaira E</au><au>Gazca, Jessica</au><au>Paesani, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halide Ion Microhydration: Structure, Energetics, and Spectroscopy of Small Halide–Water Clusters</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2019-04-04</date><risdate>2019</risdate><volume>123</volume><issue>13</issue><spage>2843</spage><epage>2852</epage><pages>2843-2852</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Replica exchange molecular dynamics simulations and vibrational spectroscopy calculations are performed using halide–water many-body potential energy functions to provide a bottom-up analysis of the structures, energetics, and hydrogen-bonding arrangements in X–(H2O) n (n = 3–6) clusters, with X = F, Cl, Br, and I. Independently of the cluster size, it is found that all four halides prefer surface-type structures in which they occupy one of the vertices in the underlying three-dimensional hydrogen-bond networks. For fluoride–water clusters, this is in contrast to previous reports suggesting that fluoride prefers interior-type arrangements, where the ion is fully hydrated. These differences can be ascribed to the variability in how various molecular models are capable of reproducing the subtle interplay between halide–water and water–water interactions. Our results thus emphasize the importance of a correct representation of individual many-body contributions to the molecular interactions for a quantitative description of halide ion hydration.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30857387</pmid><doi>10.1021/acs.jpca.9b00816</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4451-1203</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2019-04, Vol.123 (13), p.2843-2852
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2190484045
source American Chemical Society Journals
title Halide Ion Microhydration: Structure, Energetics, and Spectroscopy of Small Halide–Water Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halide%20Ion%20Microhydration:%20Structure,%20Energetics,%20and%20Spectroscopy%20of%20Small%20Halide%E2%80%93Water%20Clusters&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Bajaj,%20Pushp&rft.date=2019-04-04&rft.volume=123&rft.issue=13&rft.spage=2843&rft.epage=2852&rft.pages=2843-2852&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.9b00816&rft_dat=%3Cproquest_cross%3E2190484045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190484045&rft_id=info:pmid/30857387&rfr_iscdi=true