Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation

Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surgical oncology 2019-03, Vol.28, p.1-8
Hauptverfasser: Boogerd, Leonora S.F., Boonstra, Martin C., Prevoo, Hendrica A.J.M., Handgraaf, Henricus J.M., Kuppen, Peter J.K., van de Velde, Cornelis J.H., Fish, Alexander, Cordfunke, Robert A., Valentijn, A. Rob P.M., Terwisscha van Scheltinga, A.G., MacDonald, Glen C., Cizeau, Jeannick, Premsukh, Arjune, Vinkenburg van Slooten, Maaike L., Burggraaf, Jacobus, Sier, Cornelis F.M., Vahrmeijer, Alexander L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title Surgical oncology
container_volume 28
creator Boogerd, Leonora S.F.
Boonstra, Martin C.
Prevoo, Hendrica A.J.M.
Handgraaf, Henricus J.M.
Kuppen, Peter J.K.
van de Velde, Cornelis J.H.
Fish, Alexander
Cordfunke, Robert A.
Valentijn, A. Rob P.M.
Terwisscha van Scheltinga, A.G.
MacDonald, Glen C.
Cizeau, Jeannick
Premsukh, Arjune
Vinkenburg van Slooten, Maaike L.
Burggraaf, Jacobus
Sier, Cornelis F.M.
Vahrmeijer, Alexander L.
description Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging. Fab production, conjugation to the fluorophore IRDye 800CW, and binding capacities were determined and validated using HPLC, spectrophotometry and cell-based assays. In vivo, dose escalation-, blocking-, pharmacokinetic- and biodistribution studies (using both fluorescence and radioactivity) were performed, next to imaging of clinically relevant orthotopic xenografts for breast and colorectal cancer. EpCAM-F800 targets EpCAM with high specificity in vitro, which was validated using in vivo blocking experiments with a 10x higher dose of unlabeled Fab. The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol (52–260 μg), which corresponds to a human equivalent dose of 0.2–0.8 mg/kg. Biodistribution showed high accumulation of EpCAM-F800 in tumors and metabolizing organs. Breast and colorectal tumors could clearly be visualized within 8 h post-injection and up to 96 h, while the agent already showed homogenous tumor distribution within 4 h. The blood half-life was 4.5 h. This study describes the development and evaluation of a novel EpCAM-targeting agent and the feasibility to visualize breast and colorectal tumors by fluorescence imaging during resections. EpCAM-F800 will be translated for clinical use, considering its abundance in a broad range of tumor types. •EpCAM-F800 is a fluorescent anti-EpCAM Fab for intraoperative tumor imaging.•EpCAM-F800 targets EpCAM with high specificity in vitro and in vivo
.•Breast and colorectal tumors could be clearly detected using EpCAM-F800
.•The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol.•EpCAM-F800 will be translated for clinical use and enter the clinic shortly.
doi_str_mv 10.1016/j.suronc.2018.10.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2190099609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960740418300483</els_id><sourcerecordid>2190099609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-5fcebc81d71be084aff42bcd9b7786bc8d5da9fb9a2cbae79b00f3a50cb997643</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMoTjv6D0QCbtxUe1OVesSFMDQzKozoQtchj1ttmqqkTVI9zL83ZY8uXLgKnHz35OYcQl4y2DJg3dvDNi0xeLOtgQ1F2gLwR2TDhl5UTVPDY7IB0UHVc-AX5FlKBwDo-po9JRcNDC0bBtgQfzMtIWIy6A1W-8VZtDQvc4jUYkaTXfD0zuUfVFEfTjhR5bOrro-7q880q7gvkP2t6WDv6RjVfkaf39GvEc3kvDNqoic1OatWq-fkyaimhC8ezkvy_eb62-5jdfvlw6fd1W1lGgG5akeD2gzM9kwjDFyNI6-1sUL3_dCVG9taJUYtVG20wl5ogLFRLRgtRN_x5pK8OfseY_i5YMpyduWP06Q8hiXJmgkAUeIRBX39D3oIS_RlO1mXnLgQLe8Kxc-UiSGliKM8RjereC8ZyLUPeZDnPuTax6qWPsrYqwfzRc9o_w79KaAA788AljRODqNMxq1dWFcCzNIG9_8XfgEF1aAa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308499546</pqid></control><display><type>article</type><title>Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Boogerd, Leonora S.F. ; Boonstra, Martin C. ; Prevoo, Hendrica A.J.M. ; Handgraaf, Henricus J.M. ; Kuppen, Peter J.K. ; van de Velde, Cornelis J.H. ; Fish, Alexander ; Cordfunke, Robert A. ; Valentijn, A. Rob P.M. ; Terwisscha van Scheltinga, A.G. ; MacDonald, Glen C. ; Cizeau, Jeannick ; Premsukh, Arjune ; Vinkenburg van Slooten, Maaike L. ; Burggraaf, Jacobus ; Sier, Cornelis F.M. ; Vahrmeijer, Alexander L.</creator><creatorcontrib>Boogerd, Leonora S.F. ; Boonstra, Martin C. ; Prevoo, Hendrica A.J.M. ; Handgraaf, Henricus J.M. ; Kuppen, Peter J.K. ; van de Velde, Cornelis J.H. ; Fish, Alexander ; Cordfunke, Robert A. ; Valentijn, A. Rob P.M. ; Terwisscha van Scheltinga, A.G. ; MacDonald, Glen C. ; Cizeau, Jeannick ; Premsukh, Arjune ; Vinkenburg van Slooten, Maaike L. ; Burggraaf, Jacobus ; Sier, Cornelis F.M. ; Vahrmeijer, Alexander L.</creatorcontrib><description>Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging. Fab production, conjugation to the fluorophore IRDye 800CW, and binding capacities were determined and validated using HPLC, spectrophotometry and cell-based assays. In vivo, dose escalation-, blocking-, pharmacokinetic- and biodistribution studies (using both fluorescence and radioactivity) were performed, next to imaging of clinically relevant orthotopic xenografts for breast and colorectal cancer. EpCAM-F800 targets EpCAM with high specificity in vitro, which was validated using in vivo blocking experiments with a 10x higher dose of unlabeled Fab. The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol (52–260 μg), which corresponds to a human equivalent dose of 0.2–0.8 mg/kg. Biodistribution showed high accumulation of EpCAM-F800 in tumors and metabolizing organs. Breast and colorectal tumors could clearly be visualized within 8 h post-injection and up to 96 h, while the agent already showed homogenous tumor distribution within 4 h. The blood half-life was 4.5 h. This study describes the development and evaluation of a novel EpCAM-targeting agent and the feasibility to visualize breast and colorectal tumors by fluorescence imaging during resections. EpCAM-F800 will be translated for clinical use, considering its abundance in a broad range of tumor types. •EpCAM-F800 is a fluorescent anti-EpCAM Fab for intraoperative tumor imaging.•EpCAM-F800 targets EpCAM with high specificity in vitro and in vivo
.•Breast and colorectal tumors could be clearly detected using EpCAM-F800
.•The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol.•EpCAM-F800 will be translated for clinical use and enter the clinic shortly.</description><identifier>ISSN: 0960-7404</identifier><identifier>EISSN: 1879-3320</identifier><identifier>DOI: 10.1016/j.suronc.2018.10.004</identifier><identifier>PMID: 30851880</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Antibodies ; Breast ; Breast cancer ; Cell adhesion ; Cell adhesion &amp; migration ; Cell adhesion molecules ; Clinical trials ; Colorectal cancer ; Colorectal carcinoma ; Conjugation ; E coli ; Epithelial cell adhesion molecule ; Epithelial cells ; Fab ; Fluorescence ; Fluoroscopic imaging ; Half-life ; Head &amp; neck cancer ; High-performance liquid chromatography ; Immunoglobulins ; In vivo methods and tests ; IRDye800CW ; Liquid chromatography ; Liver ; NIR ; Organs ; Proteins ; Radioactive half-life ; Radioactivity ; Spectrophotometry ; Studies ; Surgery ; Toxicology ; Tumors ; Visualization ; Xenografts ; Xenotransplantation</subject><ispartof>Surgical oncology, 2019-03, Vol.28, p.1-8</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier Limited Mar 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-5fcebc81d71be084aff42bcd9b7786bc8d5da9fb9a2cbae79b00f3a50cb997643</citedby><cites>FETCH-LOGICAL-c390t-5fcebc81d71be084aff42bcd9b7786bc8d5da9fb9a2cbae79b00f3a50cb997643</cites><orcidid>0000-0002-5195-4440 ; 0000-0002-4337-2758 ; 0000-0002-5114-3584 ; 0000-0001-7912-0918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.suronc.2018.10.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30851880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boogerd, Leonora S.F.</creatorcontrib><creatorcontrib>Boonstra, Martin C.</creatorcontrib><creatorcontrib>Prevoo, Hendrica A.J.M.</creatorcontrib><creatorcontrib>Handgraaf, Henricus J.M.</creatorcontrib><creatorcontrib>Kuppen, Peter J.K.</creatorcontrib><creatorcontrib>van de Velde, Cornelis J.H.</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Cordfunke, Robert A.</creatorcontrib><creatorcontrib>Valentijn, A. Rob P.M.</creatorcontrib><creatorcontrib>Terwisscha van Scheltinga, A.G.</creatorcontrib><creatorcontrib>MacDonald, Glen C.</creatorcontrib><creatorcontrib>Cizeau, Jeannick</creatorcontrib><creatorcontrib>Premsukh, Arjune</creatorcontrib><creatorcontrib>Vinkenburg van Slooten, Maaike L.</creatorcontrib><creatorcontrib>Burggraaf, Jacobus</creatorcontrib><creatorcontrib>Sier, Cornelis F.M.</creatorcontrib><creatorcontrib>Vahrmeijer, Alexander L.</creatorcontrib><title>Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation</title><title>Surgical oncology</title><addtitle>Surg Oncol</addtitle><description>Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging. Fab production, conjugation to the fluorophore IRDye 800CW, and binding capacities were determined and validated using HPLC, spectrophotometry and cell-based assays. In vivo, dose escalation-, blocking-, pharmacokinetic- and biodistribution studies (using both fluorescence and radioactivity) were performed, next to imaging of clinically relevant orthotopic xenografts for breast and colorectal cancer. EpCAM-F800 targets EpCAM with high specificity in vitro, which was validated using in vivo blocking experiments with a 10x higher dose of unlabeled Fab. The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol (52–260 μg), which corresponds to a human equivalent dose of 0.2–0.8 mg/kg. Biodistribution showed high accumulation of EpCAM-F800 in tumors and metabolizing organs. Breast and colorectal tumors could clearly be visualized within 8 h post-injection and up to 96 h, while the agent already showed homogenous tumor distribution within 4 h. The blood half-life was 4.5 h. This study describes the development and evaluation of a novel EpCAM-targeting agent and the feasibility to visualize breast and colorectal tumors by fluorescence imaging during resections. EpCAM-F800 will be translated for clinical use, considering its abundance in a broad range of tumor types. •EpCAM-F800 is a fluorescent anti-EpCAM Fab for intraoperative tumor imaging.•EpCAM-F800 targets EpCAM with high specificity in vitro and in vivo
.•Breast and colorectal tumors could be clearly detected using EpCAM-F800
.•The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol.•EpCAM-F800 will be translated for clinical use and enter the clinic shortly.</description><subject>Antibodies</subject><subject>Breast</subject><subject>Breast cancer</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell adhesion molecules</subject><subject>Clinical trials</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Conjugation</subject><subject>E coli</subject><subject>Epithelial cell adhesion molecule</subject><subject>Epithelial cells</subject><subject>Fab</subject><subject>Fluorescence</subject><subject>Fluoroscopic imaging</subject><subject>Half-life</subject><subject>Head &amp; neck cancer</subject><subject>High-performance liquid chromatography</subject><subject>Immunoglobulins</subject><subject>In vivo methods and tests</subject><subject>IRDye800CW</subject><subject>Liquid chromatography</subject><subject>Liver</subject><subject>NIR</subject><subject>Organs</subject><subject>Proteins</subject><subject>Radioactive half-life</subject><subject>Radioactivity</subject><subject>Spectrophotometry</subject><subject>Studies</subject><subject>Surgery</subject><subject>Toxicology</subject><subject>Tumors</subject><subject>Visualization</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>0960-7404</issn><issn>1879-3320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhYMoTjv6D0QCbtxUe1OVesSFMDQzKozoQtchj1ttmqqkTVI9zL83ZY8uXLgKnHz35OYcQl4y2DJg3dvDNi0xeLOtgQ1F2gLwR2TDhl5UTVPDY7IB0UHVc-AX5FlKBwDo-po9JRcNDC0bBtgQfzMtIWIy6A1W-8VZtDQvc4jUYkaTXfD0zuUfVFEfTjhR5bOrro-7q880q7gvkP2t6WDv6RjVfkaf39GvEc3kvDNqoic1OatWq-fkyaimhC8ezkvy_eb62-5jdfvlw6fd1W1lGgG5akeD2gzM9kwjDFyNI6-1sUL3_dCVG9taJUYtVG20wl5ogLFRLRgtRN_x5pK8OfseY_i5YMpyduWP06Q8hiXJmgkAUeIRBX39D3oIS_RlO1mXnLgQLe8Kxc-UiSGliKM8RjereC8ZyLUPeZDnPuTax6qWPsrYqwfzRc9o_w79KaAA788AljRODqNMxq1dWFcCzNIG9_8XfgEF1aAa</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Boogerd, Leonora S.F.</creator><creator>Boonstra, Martin C.</creator><creator>Prevoo, Hendrica A.J.M.</creator><creator>Handgraaf, Henricus J.M.</creator><creator>Kuppen, Peter J.K.</creator><creator>van de Velde, Cornelis J.H.</creator><creator>Fish, Alexander</creator><creator>Cordfunke, Robert A.</creator><creator>Valentijn, A. Rob P.M.</creator><creator>Terwisscha van Scheltinga, A.G.</creator><creator>MacDonald, Glen C.</creator><creator>Cizeau, Jeannick</creator><creator>Premsukh, Arjune</creator><creator>Vinkenburg van Slooten, Maaike L.</creator><creator>Burggraaf, Jacobus</creator><creator>Sier, Cornelis F.M.</creator><creator>Vahrmeijer, Alexander L.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5195-4440</orcidid><orcidid>https://orcid.org/0000-0002-4337-2758</orcidid><orcidid>https://orcid.org/0000-0002-5114-3584</orcidid><orcidid>https://orcid.org/0000-0001-7912-0918</orcidid></search><sort><creationdate>201903</creationdate><title>Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation</title><author>Boogerd, Leonora S.F. ; Boonstra, Martin C. ; Prevoo, Hendrica A.J.M. ; Handgraaf, Henricus J.M. ; Kuppen, Peter J.K. ; van de Velde, Cornelis J.H. ; Fish, Alexander ; Cordfunke, Robert A. ; Valentijn, A. Rob P.M. ; Terwisscha van Scheltinga, A.G. ; MacDonald, Glen C. ; Cizeau, Jeannick ; Premsukh, Arjune ; Vinkenburg van Slooten, Maaike L. ; Burggraaf, Jacobus ; Sier, Cornelis F.M. ; Vahrmeijer, Alexander L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-5fcebc81d71be084aff42bcd9b7786bc8d5da9fb9a2cbae79b00f3a50cb997643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antibodies</topic><topic>Breast</topic><topic>Breast cancer</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell adhesion molecules</topic><topic>Clinical trials</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Conjugation</topic><topic>E coli</topic><topic>Epithelial cell adhesion molecule</topic><topic>Epithelial cells</topic><topic>Fab</topic><topic>Fluorescence</topic><topic>Fluoroscopic imaging</topic><topic>Half-life</topic><topic>Head &amp; neck cancer</topic><topic>High-performance liquid chromatography</topic><topic>Immunoglobulins</topic><topic>In vivo methods and tests</topic><topic>IRDye800CW</topic><topic>Liquid chromatography</topic><topic>Liver</topic><topic>NIR</topic><topic>Organs</topic><topic>Proteins</topic><topic>Radioactive half-life</topic><topic>Radioactivity</topic><topic>Spectrophotometry</topic><topic>Studies</topic><topic>Surgery</topic><topic>Toxicology</topic><topic>Tumors</topic><topic>Visualization</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boogerd, Leonora S.F.</creatorcontrib><creatorcontrib>Boonstra, Martin C.</creatorcontrib><creatorcontrib>Prevoo, Hendrica A.J.M.</creatorcontrib><creatorcontrib>Handgraaf, Henricus J.M.</creatorcontrib><creatorcontrib>Kuppen, Peter J.K.</creatorcontrib><creatorcontrib>van de Velde, Cornelis J.H.</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Cordfunke, Robert A.</creatorcontrib><creatorcontrib>Valentijn, A. Rob P.M.</creatorcontrib><creatorcontrib>Terwisscha van Scheltinga, A.G.</creatorcontrib><creatorcontrib>MacDonald, Glen C.</creatorcontrib><creatorcontrib>Cizeau, Jeannick</creatorcontrib><creatorcontrib>Premsukh, Arjune</creatorcontrib><creatorcontrib>Vinkenburg van Slooten, Maaike L.</creatorcontrib><creatorcontrib>Burggraaf, Jacobus</creatorcontrib><creatorcontrib>Sier, Cornelis F.M.</creatorcontrib><creatorcontrib>Vahrmeijer, Alexander L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Surgical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boogerd, Leonora S.F.</au><au>Boonstra, Martin C.</au><au>Prevoo, Hendrica A.J.M.</au><au>Handgraaf, Henricus J.M.</au><au>Kuppen, Peter J.K.</au><au>van de Velde, Cornelis J.H.</au><au>Fish, Alexander</au><au>Cordfunke, Robert A.</au><au>Valentijn, A. Rob P.M.</au><au>Terwisscha van Scheltinga, A.G.</au><au>MacDonald, Glen C.</au><au>Cizeau, Jeannick</au><au>Premsukh, Arjune</au><au>Vinkenburg van Slooten, Maaike L.</au><au>Burggraaf, Jacobus</au><au>Sier, Cornelis F.M.</au><au>Vahrmeijer, Alexander L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation</atitle><jtitle>Surgical oncology</jtitle><addtitle>Surg Oncol</addtitle><date>2019-03</date><risdate>2019</risdate><volume>28</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0960-7404</issn><eissn>1879-3320</eissn><abstract>Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging. Fab production, conjugation to the fluorophore IRDye 800CW, and binding capacities were determined and validated using HPLC, spectrophotometry and cell-based assays. In vivo, dose escalation-, blocking-, pharmacokinetic- and biodistribution studies (using both fluorescence and radioactivity) were performed, next to imaging of clinically relevant orthotopic xenografts for breast and colorectal cancer. EpCAM-F800 targets EpCAM with high specificity in vitro, which was validated using in vivo blocking experiments with a 10x higher dose of unlabeled Fab. The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol (52–260 μg), which corresponds to a human equivalent dose of 0.2–0.8 mg/kg. Biodistribution showed high accumulation of EpCAM-F800 in tumors and metabolizing organs. Breast and colorectal tumors could clearly be visualized within 8 h post-injection and up to 96 h, while the agent already showed homogenous tumor distribution within 4 h. The blood half-life was 4.5 h. This study describes the development and evaluation of a novel EpCAM-targeting agent and the feasibility to visualize breast and colorectal tumors by fluorescence imaging during resections. EpCAM-F800 will be translated for clinical use, considering its abundance in a broad range of tumor types. •EpCAM-F800 is a fluorescent anti-EpCAM Fab for intraoperative tumor imaging.•EpCAM-F800 targets EpCAM with high specificity in vitro and in vivo
.•Breast and colorectal tumors could be clearly detected using EpCAM-F800
.•The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol.•EpCAM-F800 will be translated for clinical use and enter the clinic shortly.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>30851880</pmid><doi>10.1016/j.suronc.2018.10.004</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5195-4440</orcidid><orcidid>https://orcid.org/0000-0002-4337-2758</orcidid><orcidid>https://orcid.org/0000-0002-5114-3584</orcidid><orcidid>https://orcid.org/0000-0001-7912-0918</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-7404
ispartof Surgical oncology, 2019-03, Vol.28, p.1-8
issn 0960-7404
1879-3320
language eng
recordid cdi_proquest_miscellaneous_2190099609
source Access via ScienceDirect (Elsevier)
subjects Antibodies
Breast
Breast cancer
Cell adhesion
Cell adhesion & migration
Cell adhesion molecules
Clinical trials
Colorectal cancer
Colorectal carcinoma
Conjugation
E coli
Epithelial cell adhesion molecule
Epithelial cells
Fab
Fluorescence
Fluoroscopic imaging
Half-life
Head & neck cancer
High-performance liquid chromatography
Immunoglobulins
In vivo methods and tests
IRDye800CW
Liquid chromatography
Liver
NIR
Organs
Proteins
Radioactive half-life
Radioactivity
Spectrophotometry
Studies
Surgery
Toxicology
Tumors
Visualization
Xenografts
Xenotransplantation
title Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence-guided%20tumor%20detection%20with%20a%20novel%20anti-EpCAM%20targeted%20antibody%20fragment:%20Preclinical%20validation&rft.jtitle=Surgical%20oncology&rft.au=Boogerd,%20Leonora%20S.F.&rft.date=2019-03&rft.volume=28&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0960-7404&rft.eissn=1879-3320&rft_id=info:doi/10.1016/j.suronc.2018.10.004&rft_dat=%3Cproquest_cross%3E2190099609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308499546&rft_id=info:pmid/30851880&rft_els_id=S0960740418300483&rfr_iscdi=true