Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation
Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on e...
Gespeichert in:
Veröffentlicht in: | Surgical oncology 2019-03, Vol.28, p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Surgical oncology |
container_volume | 28 |
creator | Boogerd, Leonora S.F. Boonstra, Martin C. Prevoo, Hendrica A.J.M. Handgraaf, Henricus J.M. Kuppen, Peter J.K. van de Velde, Cornelis J.H. Fish, Alexander Cordfunke, Robert A. Valentijn, A. Rob P.M. Terwisscha van Scheltinga, A.G. MacDonald, Glen C. Cizeau, Jeannick Premsukh, Arjune Vinkenburg van Slooten, Maaike L. Burggraaf, Jacobus Sier, Cornelis F.M. Vahrmeijer, Alexander L. |
description | Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging. Fab production, conjugation to the fluorophore IRDye 800CW, and binding capacities were determined and validated using HPLC, spectrophotometry and cell-based assays. In vivo, dose escalation-, blocking-, pharmacokinetic- and biodistribution studies (using both fluorescence and radioactivity) were performed, next to imaging of clinically relevant orthotopic xenografts for breast and colorectal cancer. EpCAM-F800 targets EpCAM with high specificity in vitro, which was validated using in vivo blocking experiments with a 10x higher dose of unlabeled Fab. The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol (52–260 μg), which corresponds to a human equivalent dose of 0.2–0.8 mg/kg. Biodistribution showed high accumulation of EpCAM-F800 in tumors and metabolizing organs. Breast and colorectal tumors could clearly be visualized within 8 h post-injection and up to 96 h, while the agent already showed homogenous tumor distribution within 4 h. The blood half-life was 4.5 h. This study describes the development and evaluation of a novel EpCAM-targeting agent and the feasibility to visualize breast and colorectal tumors by fluorescence imaging during resections. EpCAM-F800 will be translated for clinical use, considering its abundance in a broad range of tumor types.
•EpCAM-F800 is a fluorescent anti-EpCAM Fab for intraoperative tumor imaging.•EpCAM-F800 targets EpCAM with high specificity in vitro and in vivo
.•Breast and colorectal tumors could be clearly detected using EpCAM-F800
.•The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol.•EpCAM-F800 will be translated for clinical use and enter the clinic shortly. |
doi_str_mv | 10.1016/j.suronc.2018.10.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2190099609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960740418300483</els_id><sourcerecordid>2190099609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-5fcebc81d71be084aff42bcd9b7786bc8d5da9fb9a2cbae79b00f3a50cb997643</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMoTjv6D0QCbtxUe1OVesSFMDQzKozoQtchj1ttmqqkTVI9zL83ZY8uXLgKnHz35OYcQl4y2DJg3dvDNi0xeLOtgQ1F2gLwR2TDhl5UTVPDY7IB0UHVc-AX5FlKBwDo-po9JRcNDC0bBtgQfzMtIWIy6A1W-8VZtDQvc4jUYkaTXfD0zuUfVFEfTjhR5bOrro-7q880q7gvkP2t6WDv6RjVfkaf39GvEc3kvDNqoic1OatWq-fkyaimhC8ezkvy_eb62-5jdfvlw6fd1W1lGgG5akeD2gzM9kwjDFyNI6-1sUL3_dCVG9taJUYtVG20wl5ogLFRLRgtRN_x5pK8OfseY_i5YMpyduWP06Q8hiXJmgkAUeIRBX39D3oIS_RlO1mXnLgQLe8Kxc-UiSGliKM8RjereC8ZyLUPeZDnPuTax6qWPsrYqwfzRc9o_w79KaAA788AljRODqNMxq1dWFcCzNIG9_8XfgEF1aAa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308499546</pqid></control><display><type>article</type><title>Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Boogerd, Leonora S.F. ; Boonstra, Martin C. ; Prevoo, Hendrica A.J.M. ; Handgraaf, Henricus J.M. ; Kuppen, Peter J.K. ; van de Velde, Cornelis J.H. ; Fish, Alexander ; Cordfunke, Robert A. ; Valentijn, A. Rob P.M. ; Terwisscha van Scheltinga, A.G. ; MacDonald, Glen C. ; Cizeau, Jeannick ; Premsukh, Arjune ; Vinkenburg van Slooten, Maaike L. ; Burggraaf, Jacobus ; Sier, Cornelis F.M. ; Vahrmeijer, Alexander L.</creator><creatorcontrib>Boogerd, Leonora S.F. ; Boonstra, Martin C. ; Prevoo, Hendrica A.J.M. ; Handgraaf, Henricus J.M. ; Kuppen, Peter J.K. ; van de Velde, Cornelis J.H. ; Fish, Alexander ; Cordfunke, Robert A. ; Valentijn, A. Rob P.M. ; Terwisscha van Scheltinga, A.G. ; MacDonald, Glen C. ; Cizeau, Jeannick ; Premsukh, Arjune ; Vinkenburg van Slooten, Maaike L. ; Burggraaf, Jacobus ; Sier, Cornelis F.M. ; Vahrmeijer, Alexander L.</creatorcontrib><description>Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging. Fab production, conjugation to the fluorophore IRDye 800CW, and binding capacities were determined and validated using HPLC, spectrophotometry and cell-based assays. In vivo, dose escalation-, blocking-, pharmacokinetic- and biodistribution studies (using both fluorescence and radioactivity) were performed, next to imaging of clinically relevant orthotopic xenografts for breast and colorectal cancer. EpCAM-F800 targets EpCAM with high specificity in vitro, which was validated using in vivo blocking experiments with a 10x higher dose of unlabeled Fab. The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol (52–260 μg), which corresponds to a human equivalent dose of 0.2–0.8 mg/kg. Biodistribution showed high accumulation of EpCAM-F800 in tumors and metabolizing organs. Breast and colorectal tumors could clearly be visualized within 8 h post-injection and up to 96 h, while the agent already showed homogenous tumor distribution within 4 h. The blood half-life was 4.5 h. This study describes the development and evaluation of a novel EpCAM-targeting agent and the feasibility to visualize breast and colorectal tumors by fluorescence imaging during resections. EpCAM-F800 will be translated for clinical use, considering its abundance in a broad range of tumor types.
•EpCAM-F800 is a fluorescent anti-EpCAM Fab for intraoperative tumor imaging.•EpCAM-F800 targets EpCAM with high specificity in vitro and in vivo
.•Breast and colorectal tumors could be clearly detected using EpCAM-F800
.•The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol.•EpCAM-F800 will be translated for clinical use and enter the clinic shortly.</description><identifier>ISSN: 0960-7404</identifier><identifier>EISSN: 1879-3320</identifier><identifier>DOI: 10.1016/j.suronc.2018.10.004</identifier><identifier>PMID: 30851880</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Antibodies ; Breast ; Breast cancer ; Cell adhesion ; Cell adhesion & migration ; Cell adhesion molecules ; Clinical trials ; Colorectal cancer ; Colorectal carcinoma ; Conjugation ; E coli ; Epithelial cell adhesion molecule ; Epithelial cells ; Fab ; Fluorescence ; Fluoroscopic imaging ; Half-life ; Head & neck cancer ; High-performance liquid chromatography ; Immunoglobulins ; In vivo methods and tests ; IRDye800CW ; Liquid chromatography ; Liver ; NIR ; Organs ; Proteins ; Radioactive half-life ; Radioactivity ; Spectrophotometry ; Studies ; Surgery ; Toxicology ; Tumors ; Visualization ; Xenografts ; Xenotransplantation</subject><ispartof>Surgical oncology, 2019-03, Vol.28, p.1-8</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier Limited Mar 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-5fcebc81d71be084aff42bcd9b7786bc8d5da9fb9a2cbae79b00f3a50cb997643</citedby><cites>FETCH-LOGICAL-c390t-5fcebc81d71be084aff42bcd9b7786bc8d5da9fb9a2cbae79b00f3a50cb997643</cites><orcidid>0000-0002-5195-4440 ; 0000-0002-4337-2758 ; 0000-0002-5114-3584 ; 0000-0001-7912-0918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.suronc.2018.10.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30851880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boogerd, Leonora S.F.</creatorcontrib><creatorcontrib>Boonstra, Martin C.</creatorcontrib><creatorcontrib>Prevoo, Hendrica A.J.M.</creatorcontrib><creatorcontrib>Handgraaf, Henricus J.M.</creatorcontrib><creatorcontrib>Kuppen, Peter J.K.</creatorcontrib><creatorcontrib>van de Velde, Cornelis J.H.</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Cordfunke, Robert A.</creatorcontrib><creatorcontrib>Valentijn, A. Rob P.M.</creatorcontrib><creatorcontrib>Terwisscha van Scheltinga, A.G.</creatorcontrib><creatorcontrib>MacDonald, Glen C.</creatorcontrib><creatorcontrib>Cizeau, Jeannick</creatorcontrib><creatorcontrib>Premsukh, Arjune</creatorcontrib><creatorcontrib>Vinkenburg van Slooten, Maaike L.</creatorcontrib><creatorcontrib>Burggraaf, Jacobus</creatorcontrib><creatorcontrib>Sier, Cornelis F.M.</creatorcontrib><creatorcontrib>Vahrmeijer, Alexander L.</creatorcontrib><title>Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation</title><title>Surgical oncology</title><addtitle>Surg Oncol</addtitle><description>Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging. Fab production, conjugation to the fluorophore IRDye 800CW, and binding capacities were determined and validated using HPLC, spectrophotometry and cell-based assays. In vivo, dose escalation-, blocking-, pharmacokinetic- and biodistribution studies (using both fluorescence and radioactivity) were performed, next to imaging of clinically relevant orthotopic xenografts for breast and colorectal cancer. EpCAM-F800 targets EpCAM with high specificity in vitro, which was validated using in vivo blocking experiments with a 10x higher dose of unlabeled Fab. The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol (52–260 μg), which corresponds to a human equivalent dose of 0.2–0.8 mg/kg. Biodistribution showed high accumulation of EpCAM-F800 in tumors and metabolizing organs. Breast and colorectal tumors could clearly be visualized within 8 h post-injection and up to 96 h, while the agent already showed homogenous tumor distribution within 4 h. The blood half-life was 4.5 h. This study describes the development and evaluation of a novel EpCAM-targeting agent and the feasibility to visualize breast and colorectal tumors by fluorescence imaging during resections. EpCAM-F800 will be translated for clinical use, considering its abundance in a broad range of tumor types.
•EpCAM-F800 is a fluorescent anti-EpCAM Fab for intraoperative tumor imaging.•EpCAM-F800 targets EpCAM with high specificity in vitro and in vivo
.•Breast and colorectal tumors could be clearly detected using EpCAM-F800
.•The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol.•EpCAM-F800 will be translated for clinical use and enter the clinic shortly.</description><subject>Antibodies</subject><subject>Breast</subject><subject>Breast cancer</subject><subject>Cell adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell adhesion molecules</subject><subject>Clinical trials</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Conjugation</subject><subject>E coli</subject><subject>Epithelial cell adhesion molecule</subject><subject>Epithelial cells</subject><subject>Fab</subject><subject>Fluorescence</subject><subject>Fluoroscopic imaging</subject><subject>Half-life</subject><subject>Head & neck cancer</subject><subject>High-performance liquid chromatography</subject><subject>Immunoglobulins</subject><subject>In vivo methods and tests</subject><subject>IRDye800CW</subject><subject>Liquid chromatography</subject><subject>Liver</subject><subject>NIR</subject><subject>Organs</subject><subject>Proteins</subject><subject>Radioactive half-life</subject><subject>Radioactivity</subject><subject>Spectrophotometry</subject><subject>Studies</subject><subject>Surgery</subject><subject>Toxicology</subject><subject>Tumors</subject><subject>Visualization</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>0960-7404</issn><issn>1879-3320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhYMoTjv6D0QCbtxUe1OVesSFMDQzKozoQtchj1ttmqqkTVI9zL83ZY8uXLgKnHz35OYcQl4y2DJg3dvDNi0xeLOtgQ1F2gLwR2TDhl5UTVPDY7IB0UHVc-AX5FlKBwDo-po9JRcNDC0bBtgQfzMtIWIy6A1W-8VZtDQvc4jUYkaTXfD0zuUfVFEfTjhR5bOrro-7q880q7gvkP2t6WDv6RjVfkaf39GvEc3kvDNqoic1OatWq-fkyaimhC8ezkvy_eb62-5jdfvlw6fd1W1lGgG5akeD2gzM9kwjDFyNI6-1sUL3_dCVG9taJUYtVG20wl5ogLFRLRgtRN_x5pK8OfseY_i5YMpyduWP06Q8hiXJmgkAUeIRBX39D3oIS_RlO1mXnLgQLe8Kxc-UiSGliKM8RjereC8ZyLUPeZDnPuTax6qWPsrYqwfzRc9o_w79KaAA788AljRODqNMxq1dWFcCzNIG9_8XfgEF1aAa</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Boogerd, Leonora S.F.</creator><creator>Boonstra, Martin C.</creator><creator>Prevoo, Hendrica A.J.M.</creator><creator>Handgraaf, Henricus J.M.</creator><creator>Kuppen, Peter J.K.</creator><creator>van de Velde, Cornelis J.H.</creator><creator>Fish, Alexander</creator><creator>Cordfunke, Robert A.</creator><creator>Valentijn, A. Rob P.M.</creator><creator>Terwisscha van Scheltinga, A.G.</creator><creator>MacDonald, Glen C.</creator><creator>Cizeau, Jeannick</creator><creator>Premsukh, Arjune</creator><creator>Vinkenburg van Slooten, Maaike L.</creator><creator>Burggraaf, Jacobus</creator><creator>Sier, Cornelis F.M.</creator><creator>Vahrmeijer, Alexander L.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5195-4440</orcidid><orcidid>https://orcid.org/0000-0002-4337-2758</orcidid><orcidid>https://orcid.org/0000-0002-5114-3584</orcidid><orcidid>https://orcid.org/0000-0001-7912-0918</orcidid></search><sort><creationdate>201903</creationdate><title>Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation</title><author>Boogerd, Leonora S.F. ; Boonstra, Martin C. ; Prevoo, Hendrica A.J.M. ; Handgraaf, Henricus J.M. ; Kuppen, Peter J.K. ; van de Velde, Cornelis J.H. ; Fish, Alexander ; Cordfunke, Robert A. ; Valentijn, A. Rob P.M. ; Terwisscha van Scheltinga, A.G. ; MacDonald, Glen C. ; Cizeau, Jeannick ; Premsukh, Arjune ; Vinkenburg van Slooten, Maaike L. ; Burggraaf, Jacobus ; Sier, Cornelis F.M. ; Vahrmeijer, Alexander L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-5fcebc81d71be084aff42bcd9b7786bc8d5da9fb9a2cbae79b00f3a50cb997643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antibodies</topic><topic>Breast</topic><topic>Breast cancer</topic><topic>Cell adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell adhesion molecules</topic><topic>Clinical trials</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Conjugation</topic><topic>E coli</topic><topic>Epithelial cell adhesion molecule</topic><topic>Epithelial cells</topic><topic>Fab</topic><topic>Fluorescence</topic><topic>Fluoroscopic imaging</topic><topic>Half-life</topic><topic>Head & neck cancer</topic><topic>High-performance liquid chromatography</topic><topic>Immunoglobulins</topic><topic>In vivo methods and tests</topic><topic>IRDye800CW</topic><topic>Liquid chromatography</topic><topic>Liver</topic><topic>NIR</topic><topic>Organs</topic><topic>Proteins</topic><topic>Radioactive half-life</topic><topic>Radioactivity</topic><topic>Spectrophotometry</topic><topic>Studies</topic><topic>Surgery</topic><topic>Toxicology</topic><topic>Tumors</topic><topic>Visualization</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boogerd, Leonora S.F.</creatorcontrib><creatorcontrib>Boonstra, Martin C.</creatorcontrib><creatorcontrib>Prevoo, Hendrica A.J.M.</creatorcontrib><creatorcontrib>Handgraaf, Henricus J.M.</creatorcontrib><creatorcontrib>Kuppen, Peter J.K.</creatorcontrib><creatorcontrib>van de Velde, Cornelis J.H.</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Cordfunke, Robert A.</creatorcontrib><creatorcontrib>Valentijn, A. Rob P.M.</creatorcontrib><creatorcontrib>Terwisscha van Scheltinga, A.G.</creatorcontrib><creatorcontrib>MacDonald, Glen C.</creatorcontrib><creatorcontrib>Cizeau, Jeannick</creatorcontrib><creatorcontrib>Premsukh, Arjune</creatorcontrib><creatorcontrib>Vinkenburg van Slooten, Maaike L.</creatorcontrib><creatorcontrib>Burggraaf, Jacobus</creatorcontrib><creatorcontrib>Sier, Cornelis F.M.</creatorcontrib><creatorcontrib>Vahrmeijer, Alexander L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Surgical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boogerd, Leonora S.F.</au><au>Boonstra, Martin C.</au><au>Prevoo, Hendrica A.J.M.</au><au>Handgraaf, Henricus J.M.</au><au>Kuppen, Peter J.K.</au><au>van de Velde, Cornelis J.H.</au><au>Fish, Alexander</au><au>Cordfunke, Robert A.</au><au>Valentijn, A. Rob P.M.</au><au>Terwisscha van Scheltinga, A.G.</au><au>MacDonald, Glen C.</au><au>Cizeau, Jeannick</au><au>Premsukh, Arjune</au><au>Vinkenburg van Slooten, Maaike L.</au><au>Burggraaf, Jacobus</au><au>Sier, Cornelis F.M.</au><au>Vahrmeijer, Alexander L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation</atitle><jtitle>Surgical oncology</jtitle><addtitle>Surg Oncol</addtitle><date>2019-03</date><risdate>2019</risdate><volume>28</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0960-7404</issn><eissn>1879-3320</eissn><abstract>Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging. Fab production, conjugation to the fluorophore IRDye 800CW, and binding capacities were determined and validated using HPLC, spectrophotometry and cell-based assays. In vivo, dose escalation-, blocking-, pharmacokinetic- and biodistribution studies (using both fluorescence and radioactivity) were performed, next to imaging of clinically relevant orthotopic xenografts for breast and colorectal cancer. EpCAM-F800 targets EpCAM with high specificity in vitro, which was validated using in vivo blocking experiments with a 10x higher dose of unlabeled Fab. The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol (52–260 μg), which corresponds to a human equivalent dose of 0.2–0.8 mg/kg. Biodistribution showed high accumulation of EpCAM-F800 in tumors and metabolizing organs. Breast and colorectal tumors could clearly be visualized within 8 h post-injection and up to 96 h, while the agent already showed homogenous tumor distribution within 4 h. The blood half-life was 4.5 h. This study describes the development and evaluation of a novel EpCAM-targeting agent and the feasibility to visualize breast and colorectal tumors by fluorescence imaging during resections. EpCAM-F800 will be translated for clinical use, considering its abundance in a broad range of tumor types.
•EpCAM-F800 is a fluorescent anti-EpCAM Fab for intraoperative tumor imaging.•EpCAM-F800 targets EpCAM with high specificity in vitro and in vivo
.•Breast and colorectal tumors could be clearly detected using EpCAM-F800
.•The optimal dose range for fluorescence tumor detection in mice was 1–5 nmol.•EpCAM-F800 will be translated for clinical use and enter the clinic shortly.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>30851880</pmid><doi>10.1016/j.suronc.2018.10.004</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5195-4440</orcidid><orcidid>https://orcid.org/0000-0002-4337-2758</orcidid><orcidid>https://orcid.org/0000-0002-5114-3584</orcidid><orcidid>https://orcid.org/0000-0001-7912-0918</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7404 |
ispartof | Surgical oncology, 2019-03, Vol.28, p.1-8 |
issn | 0960-7404 1879-3320 |
language | eng |
recordid | cdi_proquest_miscellaneous_2190099609 |
source | Access via ScienceDirect (Elsevier) |
subjects | Antibodies Breast Breast cancer Cell adhesion Cell adhesion & migration Cell adhesion molecules Clinical trials Colorectal cancer Colorectal carcinoma Conjugation E coli Epithelial cell adhesion molecule Epithelial cells Fab Fluorescence Fluoroscopic imaging Half-life Head & neck cancer High-performance liquid chromatography Immunoglobulins In vivo methods and tests IRDye800CW Liquid chromatography Liver NIR Organs Proteins Radioactive half-life Radioactivity Spectrophotometry Studies Surgery Toxicology Tumors Visualization Xenografts Xenotransplantation |
title | Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence-guided%20tumor%20detection%20with%20a%20novel%20anti-EpCAM%20targeted%20antibody%20fragment:%20Preclinical%20validation&rft.jtitle=Surgical%20oncology&rft.au=Boogerd,%20Leonora%20S.F.&rft.date=2019-03&rft.volume=28&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0960-7404&rft.eissn=1879-3320&rft_id=info:doi/10.1016/j.suronc.2018.10.004&rft_dat=%3Cproquest_cross%3E2190099609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308499546&rft_id=info:pmid/30851880&rft_els_id=S0960740418300483&rfr_iscdi=true |