Separate and Combined Effects of GIP and GLP-1 Infusions on Bone Metabolism in Overweight Men Without Diabetes
Abstract Context The gut-derived incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) have been suggested to play a role in bone metabolism. Exogenous administration of GIP inhibits bone resorption, but the effect of GLP-1 is less clear. Furthermor...
Gespeichert in:
Veröffentlicht in: | The journal of clinical endocrinology and metabolism 2019-07, Vol.104 (7), p.2953-2960 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2960 |
---|---|
container_issue | 7 |
container_start_page | 2953 |
container_title | The journal of clinical endocrinology and metabolism |
container_volume | 104 |
creator | Bergmann, Natasha Chidekel Lund, Asger Gasbjerg, Lærke Smidt Jørgensen, Niklas Rye Jessen, Lene Hartmann, Bolette Holst, Jens Juul Christensen, Mikkel Bring Vilsbøll, Tina Knop, Filip Krag |
description | Abstract
Context
The gut-derived incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) have been suggested to play a role in bone metabolism. Exogenous administration of GIP inhibits bone resorption, but the effect of GLP-1 is less clear. Furthermore, the combined effect of exogenous GIP and GLP-1 on bone metabolism is unknown.
Objective
To investigate the effect of separate and combined infusions of the incretin hormones GIP and GLP-1 on bone resorption and formation.
Design
Randomized, double-blinded, placebo-controlled, crossover study including five study days.
Participants
Seventeen overweight/obese men.
Interventions
On the first study day, a 50-g oral glucose tolerance test (OGTT) was performed. On the next four study days, isoglycemic IV glucose infusions (IIGI), mimicking the glucose excursions from the OGTT, were performed with concomitant infusions of GIP (4 pmol/kg/min), GLP-1 (1 pmol/kg/min), GIP+GLP-1 (4 and 1 pmol/kg/min, respectively), or placebo, respectively.
Primary Outcomes
Changes in bone resorption assessed by measurements of carboxy-terminal type I collagen crosslinks (CTX) and in bone formation as assessed by procollagen type 1 N-terminal propeptide (P1NP) concentrations.
Results
During the OGTT, CTX was significantly lowered by 54 ± 13% from baseline (mean ± SD) compared with 28 ± 12% during IIGI + saline (P < 0.0001). During IIGI+GLP-1 and IIGI+GIP, CTX was lowered by 65 ± 16% and 74 ± 9%, respectively, from baseline, whereas IGII+GIP+GLP-1 lowered CTX by 84 ± 4% from baseline. P1NP levels were unaffected by the interventions.
Conclusions
Our data suggest that GLP-1, like GIP, may be involved in regulation of bone resorption and that GIP and GLP-1 together have partially additive inhibitory effects.
In overweight men, infusion of GIP and GLP-1 decreased bone resorption, and coinfusion of the two incretins had partially additive effects on bone resorption. |
doi_str_mv | 10.1210/jc.2019-00008 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2189541821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A688567512</galeid><oup_id>10.1210/jc.2019-00008</oup_id><sourcerecordid>A688567512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5028-f784b6e2568edfe5c3c46cb02f1598a793dbcb5a920d796d45d6951719d92be03</originalsourceid><addsrcrecordid>eNp1kcGPEyEUxidG49bVo1dD4sXLVGCGGTiuda1NanYTNXojDPPYUmegAmPjfy_ddjVuFA4kfL_38XhfUTwneE4owa-3ek4xESXOiz8oZkTUrGyJaB8WM4wpKUVLv54VT2LcYkzqmlWPi7MK85q3gswK9xF2KqgESLkeLfzYWQc9ujQGdIrIG7RcXd9qy_V1SdDKmSla77Lk0BvvAH2ApDo_2Dgi69DVDwh7sDeblAWHvti08VNCb63qIEF8Wjwyaojw7HSeF5_fXX5avC_XV8vV4mJdaoYpL03L664ByhoOvQGmK103usPUECa4akXVd7pjSlDct6Lpa9Y3gpH87V7QDnB1Xrw6-u6C_z5BTHK0UcMwKAd-ipISLlhNOCUZfXkP3fopuNydpFVT06qlov1D3agBpHXGp6D0wVReNJyzpmWEZmr-DyrvHkar87SMzfd_FZTHAh18jAGM3AU7qvBTEiwP-cqtlod85W2-mX9xanbqRuh_03eBZoAcgb0fEoT4bZj2EOQG1JA2903LO9PTsPy0-9_7J_QXzCm4kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364237297</pqid></control><display><type>article</type><title>Separate and Combined Effects of GIP and GLP-1 Infusions on Bone Metabolism in Overweight Men Without Diabetes</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Bergmann, Natasha Chidekel ; Lund, Asger ; Gasbjerg, Lærke Smidt ; Jørgensen, Niklas Rye ; Jessen, Lene ; Hartmann, Bolette ; Holst, Jens Juul ; Christensen, Mikkel Bring ; Vilsbøll, Tina ; Knop, Filip Krag</creator><creatorcontrib>Bergmann, Natasha Chidekel ; Lund, Asger ; Gasbjerg, Lærke Smidt ; Jørgensen, Niklas Rye ; Jessen, Lene ; Hartmann, Bolette ; Holst, Jens Juul ; Christensen, Mikkel Bring ; Vilsbøll, Tina ; Knop, Filip Krag</creatorcontrib><description>Abstract
Context
The gut-derived incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) have been suggested to play a role in bone metabolism. Exogenous administration of GIP inhibits bone resorption, but the effect of GLP-1 is less clear. Furthermore, the combined effect of exogenous GIP and GLP-1 on bone metabolism is unknown.
Objective
To investigate the effect of separate and combined infusions of the incretin hormones GIP and GLP-1 on bone resorption and formation.
Design
Randomized, double-blinded, placebo-controlled, crossover study including five study days.
Participants
Seventeen overweight/obese men.
Interventions
On the first study day, a 50-g oral glucose tolerance test (OGTT) was performed. On the next four study days, isoglycemic IV glucose infusions (IIGI), mimicking the glucose excursions from the OGTT, were performed with concomitant infusions of GIP (4 pmol/kg/min), GLP-1 (1 pmol/kg/min), GIP+GLP-1 (4 and 1 pmol/kg/min, respectively), or placebo, respectively.
Primary Outcomes
Changes in bone resorption assessed by measurements of carboxy-terminal type I collagen crosslinks (CTX) and in bone formation as assessed by procollagen type 1 N-terminal propeptide (P1NP) concentrations.
Results
During the OGTT, CTX was significantly lowered by 54 ± 13% from baseline (mean ± SD) compared with 28 ± 12% during IIGI + saline (P < 0.0001). During IIGI+GLP-1 and IIGI+GIP, CTX was lowered by 65 ± 16% and 74 ± 9%, respectively, from baseline, whereas IGII+GIP+GLP-1 lowered CTX by 84 ± 4% from baseline. P1NP levels were unaffected by the interventions.
Conclusions
Our data suggest that GLP-1, like GIP, may be involved in regulation of bone resorption and that GIP and GLP-1 together have partially additive inhibitory effects.
In overweight men, infusion of GIP and GLP-1 decreased bone resorption, and coinfusion of the two incretins had partially additive effects on bone resorption.</description><identifier>ISSN: 0021-972X</identifier><identifier>EISSN: 1945-7197</identifier><identifier>DOI: 10.1210/jc.2019-00008</identifier><identifier>PMID: 30848791</identifier><language>eng</language><publisher>Washington, DC: Endocrine Society</publisher><subject>Analysis ; Biotechnology industry ; Body weight ; Bone growth ; Bone resorption ; Bone turnover ; Collagen ; Collagen (type I) ; Cross-linking ; Dextrose ; Diabetes mellitus ; Ethylenediaminetetraacetic acid ; GIP protein ; Glucagon ; Glucagon-like peptide 1 ; Glucose ; Glucose tolerance ; Glucose tolerance tests ; Liraglutide ; Metabolism ; Mimicry ; Osteogenesis ; Overweight ; Overweight persons ; Physiological aspects ; Procollagen ; Type 2 diabetes ; Vitamin D</subject><ispartof>The journal of clinical endocrinology and metabolism, 2019-07, Vol.104 (7), p.2953-2960</ispartof><rights>Copyright © 2019 Endocrine Society 2019</rights><rights>Copyright © Oxford University Press 2015</rights><rights>Copyright © 2019 Endocrine Society.</rights><rights>COPYRIGHT 2019 Oxford University Press</rights><rights>Copyright © 2019 Endocrine Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5028-f784b6e2568edfe5c3c46cb02f1598a793dbcb5a920d796d45d6951719d92be03</citedby><cites>FETCH-LOGICAL-c5028-f784b6e2568edfe5c3c46cb02f1598a793dbcb5a920d796d45d6951719d92be03</cites><orcidid>0000-0003-1212-3764 ; 0000-0002-0456-6787 ; 0000-0002-2495-5034 ; 0000-0002-7880-8515 ; 0000-0001-8509-2036 ; 0000-0001-6853-3805 ; 0000-0002-6797-8041 ; 0000-0001-9624-5210 ; 0000-0002-8774-1797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2364237297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21369,27903,27904,33723,33724,43784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30848791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergmann, Natasha Chidekel</creatorcontrib><creatorcontrib>Lund, Asger</creatorcontrib><creatorcontrib>Gasbjerg, Lærke Smidt</creatorcontrib><creatorcontrib>Jørgensen, Niklas Rye</creatorcontrib><creatorcontrib>Jessen, Lene</creatorcontrib><creatorcontrib>Hartmann, Bolette</creatorcontrib><creatorcontrib>Holst, Jens Juul</creatorcontrib><creatorcontrib>Christensen, Mikkel Bring</creatorcontrib><creatorcontrib>Vilsbøll, Tina</creatorcontrib><creatorcontrib>Knop, Filip Krag</creatorcontrib><title>Separate and Combined Effects of GIP and GLP-1 Infusions on Bone Metabolism in Overweight Men Without Diabetes</title><title>The journal of clinical endocrinology and metabolism</title><addtitle>J Clin Endocrinol Metab</addtitle><description>Abstract
Context
The gut-derived incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) have been suggested to play a role in bone metabolism. Exogenous administration of GIP inhibits bone resorption, but the effect of GLP-1 is less clear. Furthermore, the combined effect of exogenous GIP and GLP-1 on bone metabolism is unknown.
Objective
To investigate the effect of separate and combined infusions of the incretin hormones GIP and GLP-1 on bone resorption and formation.
Design
Randomized, double-blinded, placebo-controlled, crossover study including five study days.
Participants
Seventeen overweight/obese men.
Interventions
On the first study day, a 50-g oral glucose tolerance test (OGTT) was performed. On the next four study days, isoglycemic IV glucose infusions (IIGI), mimicking the glucose excursions from the OGTT, were performed with concomitant infusions of GIP (4 pmol/kg/min), GLP-1 (1 pmol/kg/min), GIP+GLP-1 (4 and 1 pmol/kg/min, respectively), or placebo, respectively.
Primary Outcomes
Changes in bone resorption assessed by measurements of carboxy-terminal type I collagen crosslinks (CTX) and in bone formation as assessed by procollagen type 1 N-terminal propeptide (P1NP) concentrations.
Results
During the OGTT, CTX was significantly lowered by 54 ± 13% from baseline (mean ± SD) compared with 28 ± 12% during IIGI + saline (P < 0.0001). During IIGI+GLP-1 and IIGI+GIP, CTX was lowered by 65 ± 16% and 74 ± 9%, respectively, from baseline, whereas IGII+GIP+GLP-1 lowered CTX by 84 ± 4% from baseline. P1NP levels were unaffected by the interventions.
Conclusions
Our data suggest that GLP-1, like GIP, may be involved in regulation of bone resorption and that GIP and GLP-1 together have partially additive inhibitory effects.
In overweight men, infusion of GIP and GLP-1 decreased bone resorption, and coinfusion of the two incretins had partially additive effects on bone resorption.</description><subject>Analysis</subject><subject>Biotechnology industry</subject><subject>Body weight</subject><subject>Bone growth</subject><subject>Bone resorption</subject><subject>Bone turnover</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Cross-linking</subject><subject>Dextrose</subject><subject>Diabetes mellitus</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>GIP protein</subject><subject>Glucagon</subject><subject>Glucagon-like peptide 1</subject><subject>Glucose</subject><subject>Glucose tolerance</subject><subject>Glucose tolerance tests</subject><subject>Liraglutide</subject><subject>Metabolism</subject><subject>Mimicry</subject><subject>Osteogenesis</subject><subject>Overweight</subject><subject>Overweight persons</subject><subject>Physiological aspects</subject><subject>Procollagen</subject><subject>Type 2 diabetes</subject><subject>Vitamin D</subject><issn>0021-972X</issn><issn>1945-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kcGPEyEUxidG49bVo1dD4sXLVGCGGTiuda1NanYTNXojDPPYUmegAmPjfy_ddjVuFA4kfL_38XhfUTwneE4owa-3ek4xESXOiz8oZkTUrGyJaB8WM4wpKUVLv54VT2LcYkzqmlWPi7MK85q3gswK9xF2KqgESLkeLfzYWQc9ujQGdIrIG7RcXd9qy_V1SdDKmSla77Lk0BvvAH2ApDo_2Dgi69DVDwh7sDeblAWHvti08VNCb63qIEF8Wjwyaojw7HSeF5_fXX5avC_XV8vV4mJdaoYpL03L664ByhoOvQGmK103usPUECa4akXVd7pjSlDct6Lpa9Y3gpH87V7QDnB1Xrw6-u6C_z5BTHK0UcMwKAd-ipISLlhNOCUZfXkP3fopuNydpFVT06qlov1D3agBpHXGp6D0wVReNJyzpmWEZmr-DyrvHkar87SMzfd_FZTHAh18jAGM3AU7qvBTEiwP-cqtlod85W2-mX9xanbqRuh_03eBZoAcgb0fEoT4bZj2EOQG1JA2903LO9PTsPy0-9_7J_QXzCm4kg</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bergmann, Natasha Chidekel</creator><creator>Lund, Asger</creator><creator>Gasbjerg, Lærke Smidt</creator><creator>Jørgensen, Niklas Rye</creator><creator>Jessen, Lene</creator><creator>Hartmann, Bolette</creator><creator>Holst, Jens Juul</creator><creator>Christensen, Mikkel Bring</creator><creator>Vilsbøll, Tina</creator><creator>Knop, Filip Krag</creator><general>Endocrine Society</general><general>Copyright Oxford University Press</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1212-3764</orcidid><orcidid>https://orcid.org/0000-0002-0456-6787</orcidid><orcidid>https://orcid.org/0000-0002-2495-5034</orcidid><orcidid>https://orcid.org/0000-0002-7880-8515</orcidid><orcidid>https://orcid.org/0000-0001-8509-2036</orcidid><orcidid>https://orcid.org/0000-0001-6853-3805</orcidid><orcidid>https://orcid.org/0000-0002-6797-8041</orcidid><orcidid>https://orcid.org/0000-0001-9624-5210</orcidid><orcidid>https://orcid.org/0000-0002-8774-1797</orcidid></search><sort><creationdate>20190701</creationdate><title>Separate and Combined Effects of GIP and GLP-1 Infusions on Bone Metabolism in Overweight Men Without Diabetes</title><author>Bergmann, Natasha Chidekel ; Lund, Asger ; Gasbjerg, Lærke Smidt ; Jørgensen, Niklas Rye ; Jessen, Lene ; Hartmann, Bolette ; Holst, Jens Juul ; Christensen, Mikkel Bring ; Vilsbøll, Tina ; Knop, Filip Krag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5028-f784b6e2568edfe5c3c46cb02f1598a793dbcb5a920d796d45d6951719d92be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Biotechnology industry</topic><topic>Body weight</topic><topic>Bone growth</topic><topic>Bone resorption</topic><topic>Bone turnover</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Cross-linking</topic><topic>Dextrose</topic><topic>Diabetes mellitus</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>GIP protein</topic><topic>Glucagon</topic><topic>Glucagon-like peptide 1</topic><topic>Glucose</topic><topic>Glucose tolerance</topic><topic>Glucose tolerance tests</topic><topic>Liraglutide</topic><topic>Metabolism</topic><topic>Mimicry</topic><topic>Osteogenesis</topic><topic>Overweight</topic><topic>Overweight persons</topic><topic>Physiological aspects</topic><topic>Procollagen</topic><topic>Type 2 diabetes</topic><topic>Vitamin D</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergmann, Natasha Chidekel</creatorcontrib><creatorcontrib>Lund, Asger</creatorcontrib><creatorcontrib>Gasbjerg, Lærke Smidt</creatorcontrib><creatorcontrib>Jørgensen, Niklas Rye</creatorcontrib><creatorcontrib>Jessen, Lene</creatorcontrib><creatorcontrib>Hartmann, Bolette</creatorcontrib><creatorcontrib>Holst, Jens Juul</creatorcontrib><creatorcontrib>Christensen, Mikkel Bring</creatorcontrib><creatorcontrib>Vilsbøll, Tina</creatorcontrib><creatorcontrib>Knop, Filip Krag</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of clinical endocrinology and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergmann, Natasha Chidekel</au><au>Lund, Asger</au><au>Gasbjerg, Lærke Smidt</au><au>Jørgensen, Niklas Rye</au><au>Jessen, Lene</au><au>Hartmann, Bolette</au><au>Holst, Jens Juul</au><au>Christensen, Mikkel Bring</au><au>Vilsbøll, Tina</au><au>Knop, Filip Krag</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separate and Combined Effects of GIP and GLP-1 Infusions on Bone Metabolism in Overweight Men Without Diabetes</atitle><jtitle>The journal of clinical endocrinology and metabolism</jtitle><addtitle>J Clin Endocrinol Metab</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>104</volume><issue>7</issue><spage>2953</spage><epage>2960</epage><pages>2953-2960</pages><issn>0021-972X</issn><eissn>1945-7197</eissn><abstract>Abstract
Context
The gut-derived incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) have been suggested to play a role in bone metabolism. Exogenous administration of GIP inhibits bone resorption, but the effect of GLP-1 is less clear. Furthermore, the combined effect of exogenous GIP and GLP-1 on bone metabolism is unknown.
Objective
To investigate the effect of separate and combined infusions of the incretin hormones GIP and GLP-1 on bone resorption and formation.
Design
Randomized, double-blinded, placebo-controlled, crossover study including five study days.
Participants
Seventeen overweight/obese men.
Interventions
On the first study day, a 50-g oral glucose tolerance test (OGTT) was performed. On the next four study days, isoglycemic IV glucose infusions (IIGI), mimicking the glucose excursions from the OGTT, were performed with concomitant infusions of GIP (4 pmol/kg/min), GLP-1 (1 pmol/kg/min), GIP+GLP-1 (4 and 1 pmol/kg/min, respectively), or placebo, respectively.
Primary Outcomes
Changes in bone resorption assessed by measurements of carboxy-terminal type I collagen crosslinks (CTX) and in bone formation as assessed by procollagen type 1 N-terminal propeptide (P1NP) concentrations.
Results
During the OGTT, CTX was significantly lowered by 54 ± 13% from baseline (mean ± SD) compared with 28 ± 12% during IIGI + saline (P < 0.0001). During IIGI+GLP-1 and IIGI+GIP, CTX was lowered by 65 ± 16% and 74 ± 9%, respectively, from baseline, whereas IGII+GIP+GLP-1 lowered CTX by 84 ± 4% from baseline. P1NP levels were unaffected by the interventions.
Conclusions
Our data suggest that GLP-1, like GIP, may be involved in regulation of bone resorption and that GIP and GLP-1 together have partially additive inhibitory effects.
In overweight men, infusion of GIP and GLP-1 decreased bone resorption, and coinfusion of the two incretins had partially additive effects on bone resorption.</abstract><cop>Washington, DC</cop><pub>Endocrine Society</pub><pmid>30848791</pmid><doi>10.1210/jc.2019-00008</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1212-3764</orcidid><orcidid>https://orcid.org/0000-0002-0456-6787</orcidid><orcidid>https://orcid.org/0000-0002-2495-5034</orcidid><orcidid>https://orcid.org/0000-0002-7880-8515</orcidid><orcidid>https://orcid.org/0000-0001-8509-2036</orcidid><orcidid>https://orcid.org/0000-0001-6853-3805</orcidid><orcidid>https://orcid.org/0000-0002-6797-8041</orcidid><orcidid>https://orcid.org/0000-0001-9624-5210</orcidid><orcidid>https://orcid.org/0000-0002-8774-1797</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-972X |
ispartof | The journal of clinical endocrinology and metabolism, 2019-07, Vol.104 (7), p.2953-2960 |
issn | 0021-972X 1945-7197 |
language | eng |
recordid | cdi_proquest_miscellaneous_2189541821 |
source | Oxford University Press Journals All Titles (1996-Current); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Analysis Biotechnology industry Body weight Bone growth Bone resorption Bone turnover Collagen Collagen (type I) Cross-linking Dextrose Diabetes mellitus Ethylenediaminetetraacetic acid GIP protein Glucagon Glucagon-like peptide 1 Glucose Glucose tolerance Glucose tolerance tests Liraglutide Metabolism Mimicry Osteogenesis Overweight Overweight persons Physiological aspects Procollagen Type 2 diabetes Vitamin D |
title | Separate and Combined Effects of GIP and GLP-1 Infusions on Bone Metabolism in Overweight Men Without Diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separate%20and%20Combined%20Effects%20of%20GIP%20and%20GLP-1%20Infusions%20on%20Bone%20Metabolism%20in%20Overweight%20Men%20Without%20Diabetes&rft.jtitle=The%20journal%20of%20clinical%20endocrinology%20and%20metabolism&rft.au=Bergmann,%20Natasha%20Chidekel&rft.date=2019-07-01&rft.volume=104&rft.issue=7&rft.spage=2953&rft.epage=2960&rft.pages=2953-2960&rft.issn=0021-972X&rft.eissn=1945-7197&rft_id=info:doi/10.1210/jc.2019-00008&rft_dat=%3Cgale_proqu%3EA688567512%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2364237297&rft_id=info:pmid/30848791&rft_galeid=A688567512&rft_oup_id=10.1210/jc.2019-00008&rfr_iscdi=true |