Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches
Learning from patient safety incident reports is a vital part of improving healthcare. However, the volume of reports and their largely free-text nature poses a major analytic challenge. The objective of this study was to test the capability of autonomous classifying of free text within patient safe...
Gespeichert in:
Veröffentlicht in: | Health informatics journal 2020-12, Vol.26 (4), p.3123-3139 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3139 |
---|---|
container_issue | 4 |
container_start_page | 3123 |
container_title | Health informatics journal |
container_volume | 26 |
creator | Evans, Huw Prosser Anastasiou, Athanasios Edwards, Adrian Hibbert, Peter Makeham, Meredith Luz, Saturnino Sheikh, Aziz Donaldson, Liam Carson-Stevens, Andrew |
description | Learning from patient safety incident reports is a vital part of improving healthcare. However, the volume of reports and their largely free-text nature poses a major analytic challenge. The objective of this study was to test the capability of autonomous classifying of free text within patient safety incident reports to determine incident type and the severity of harm outcome. Primary care patient safety incident reports (n=31333) previously expert-categorised by clinicians (training data) were processed using J48, SVM and Naïve Bayes.
The SVM classifier was the highest scoring classifier for incident type (AUROC, 0.891) and severity of harm (AUROC, 0.708). Incident reports containing deaths were most easily classified, correctly identifying 72.82% of reports. In conclusion, supervised ML can be used to classify patient safety incident report categories. The severity classifier, whilst not accurate enough to replace manual processing, could provide a valuable screening tool for this critical aspect of patient safety. |
doi_str_mv | 10.1177/1460458219833102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_AFRWT</sourceid><recordid>TN_cdi_proquest_miscellaneous_2188984908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1460458219833102</sage_id><sourcerecordid>2188984908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-cf4e86338e7a751a7d10b5fe8df0b56031b978331fd11597d54c1c7420c398f43</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVJadK095yCIJf04EZjSSv5GEK_YEsvzdlo5VGiYEuOJAfyJ_qbK7PbFgI9jWbeZ94RM4ScAfsIoNQViA0TUrfQac6Bta_ICSgBTasBjuq7ys2qH5O3OT8wxjiT_A055kwLLqQ8Ib-ulxInU3CgdjQ5e-etKT4GGh2dk59MeqbWJKRzLWMoNBuH5Zn6YP2w5gnnmAq1MZQ1NWGgGZ8w-Qot2Yc7mpcZ05PPdcZk7L0PSEc0Kaza5fftB2rmOcWqYH5HXjszZnx_iKfk9vOnnzdfm-2PL99urreNFUyVxjqBesO5RmWUBKMGYDvpUA-uxg3jsOvUuhI3AMhODVJYsEq0zPJOO8FPyeXetw5-XDCXfvLZ4jiagHHJfQtad1p0TFf04gX6EJcU6u_6VijWSmBKVortKZtizgldf1heD6xfb9W_vFVtOT8YL7sJh78Nf45TgWYPZHOH_6b-1_A3YLGdAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470251075</pqid></control><display><type>article</type><title>Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches</title><source>Sage Journals GOLD Open Access 2024</source><creator>Evans, Huw Prosser ; Anastasiou, Athanasios ; Edwards, Adrian ; Hibbert, Peter ; Makeham, Meredith ; Luz, Saturnino ; Sheikh, Aziz ; Donaldson, Liam ; Carson-Stevens, Andrew</creator><creatorcontrib>Evans, Huw Prosser ; Anastasiou, Athanasios ; Edwards, Adrian ; Hibbert, Peter ; Makeham, Meredith ; Luz, Saturnino ; Sheikh, Aziz ; Donaldson, Liam ; Carson-Stevens, Andrew</creatorcontrib><description>Learning from patient safety incident reports is a vital part of improving healthcare. However, the volume of reports and their largely free-text nature poses a major analytic challenge. The objective of this study was to test the capability of autonomous classifying of free text within patient safety incident reports to determine incident type and the severity of harm outcome. Primary care patient safety incident reports (n=31333) previously expert-categorised by clinicians (training data) were processed using J48, SVM and Naïve Bayes.
The SVM classifier was the highest scoring classifier for incident type (AUROC, 0.891) and severity of harm (AUROC, 0.708). Incident reports containing deaths were most easily classified, correctly identifying 72.82% of reports. In conclusion, supervised ML can be used to classify patient safety incident report categories. The severity classifier, whilst not accurate enough to replace manual processing, could provide a valuable screening tool for this critical aspect of patient safety.</description><identifier>ISSN: 1460-4582</identifier><identifier>EISSN: 1741-2811</identifier><identifier>DOI: 10.1177/1460458219833102</identifier><identifier>PMID: 30843455</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Automatic classification ; Machine learning ; Patient safety ; Primary care</subject><ispartof>Health informatics journal, 2020-12, Vol.26 (4), p.3123-3139</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-cf4e86338e7a751a7d10b5fe8df0b56031b978331fd11597d54c1c7420c398f43</citedby><cites>FETCH-LOGICAL-c407t-cf4e86338e7a751a7d10b5fe8df0b56031b978331fd11597d54c1c7420c398f43</cites><orcidid>0000-0001-5277-2342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1460458219833102$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1460458219833102$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,860,21947,27832,27903,27904,44924,45312</link.rule.ids><linktorsrc>$$Uhttps://journals.sagepub.com/doi/full/10.1177/1460458219833102?utm_source=summon&utm_medium=discovery-provider$$EView_record_in_SAGE_Publications$$FView_record_in_$$GSAGE_Publications</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30843455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evans, Huw Prosser</creatorcontrib><creatorcontrib>Anastasiou, Athanasios</creatorcontrib><creatorcontrib>Edwards, Adrian</creatorcontrib><creatorcontrib>Hibbert, Peter</creatorcontrib><creatorcontrib>Makeham, Meredith</creatorcontrib><creatorcontrib>Luz, Saturnino</creatorcontrib><creatorcontrib>Sheikh, Aziz</creatorcontrib><creatorcontrib>Donaldson, Liam</creatorcontrib><creatorcontrib>Carson-Stevens, Andrew</creatorcontrib><title>Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches</title><title>Health informatics journal</title><addtitle>Health Informatics J</addtitle><description>Learning from patient safety incident reports is a vital part of improving healthcare. However, the volume of reports and their largely free-text nature poses a major analytic challenge. The objective of this study was to test the capability of autonomous classifying of free text within patient safety incident reports to determine incident type and the severity of harm outcome. Primary care patient safety incident reports (n=31333) previously expert-categorised by clinicians (training data) were processed using J48, SVM and Naïve Bayes.
The SVM classifier was the highest scoring classifier for incident type (AUROC, 0.891) and severity of harm (AUROC, 0.708). Incident reports containing deaths were most easily classified, correctly identifying 72.82% of reports. In conclusion, supervised ML can be used to classify patient safety incident report categories. The severity classifier, whilst not accurate enough to replace manual processing, could provide a valuable screening tool for this critical aspect of patient safety.</description><subject>Automatic classification</subject><subject>Machine learning</subject><subject>Patient safety</subject><subject>Primary care</subject><issn>1460-4582</issn><issn>1741-2811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQhkVJadK095yCIJf04EZjSSv5GEK_YEsvzdlo5VGiYEuOJAfyJ_qbK7PbFgI9jWbeZ94RM4ScAfsIoNQViA0TUrfQac6Bta_ICSgBTasBjuq7ys2qH5O3OT8wxjiT_A055kwLLqQ8Ib-ulxInU3CgdjQ5e-etKT4GGh2dk59MeqbWJKRzLWMoNBuH5Zn6YP2w5gnnmAq1MZQ1NWGgGZ8w-Qot2Yc7mpcZ05PPdcZk7L0PSEc0Kaza5fftB2rmOcWqYH5HXjszZnx_iKfk9vOnnzdfm-2PL99urreNFUyVxjqBesO5RmWUBKMGYDvpUA-uxg3jsOvUuhI3AMhODVJYsEq0zPJOO8FPyeXetw5-XDCXfvLZ4jiagHHJfQtad1p0TFf04gX6EJcU6u_6VijWSmBKVortKZtizgldf1heD6xfb9W_vFVtOT8YL7sJh78Nf45TgWYPZHOH_6b-1_A3YLGdAg</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Evans, Huw Prosser</creator><creator>Anastasiou, Athanasios</creator><creator>Edwards, Adrian</creator><creator>Hibbert, Peter</creator><creator>Makeham, Meredith</creator><creator>Luz, Saturnino</creator><creator>Sheikh, Aziz</creator><creator>Donaldson, Liam</creator><creator>Carson-Stevens, Andrew</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5277-2342</orcidid></search><sort><creationdate>202012</creationdate><title>Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches</title><author>Evans, Huw Prosser ; Anastasiou, Athanasios ; Edwards, Adrian ; Hibbert, Peter ; Makeham, Meredith ; Luz, Saturnino ; Sheikh, Aziz ; Donaldson, Liam ; Carson-Stevens, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-cf4e86338e7a751a7d10b5fe8df0b56031b978331fd11597d54c1c7420c398f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic classification</topic><topic>Machine learning</topic><topic>Patient safety</topic><topic>Primary care</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Huw Prosser</creatorcontrib><creatorcontrib>Anastasiou, Athanasios</creatorcontrib><creatorcontrib>Edwards, Adrian</creatorcontrib><creatorcontrib>Hibbert, Peter</creatorcontrib><creatorcontrib>Makeham, Meredith</creatorcontrib><creatorcontrib>Luz, Saturnino</creatorcontrib><creatorcontrib>Sheikh, Aziz</creatorcontrib><creatorcontrib>Donaldson, Liam</creatorcontrib><creatorcontrib>Carson-Stevens, Andrew</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>MEDLINE - Academic</collection><jtitle>Health informatics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Evans, Huw Prosser</au><au>Anastasiou, Athanasios</au><au>Edwards, Adrian</au><au>Hibbert, Peter</au><au>Makeham, Meredith</au><au>Luz, Saturnino</au><au>Sheikh, Aziz</au><au>Donaldson, Liam</au><au>Carson-Stevens, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches</atitle><jtitle>Health informatics journal</jtitle><addtitle>Health Informatics J</addtitle><date>2020-12</date><risdate>2020</risdate><volume>26</volume><issue>4</issue><spage>3123</spage><epage>3139</epage><pages>3123-3139</pages><issn>1460-4582</issn><eissn>1741-2811</eissn><abstract>Learning from patient safety incident reports is a vital part of improving healthcare. However, the volume of reports and their largely free-text nature poses a major analytic challenge. The objective of this study was to test the capability of autonomous classifying of free text within patient safety incident reports to determine incident type and the severity of harm outcome. Primary care patient safety incident reports (n=31333) previously expert-categorised by clinicians (training data) were processed using J48, SVM and Naïve Bayes.
The SVM classifier was the highest scoring classifier for incident type (AUROC, 0.891) and severity of harm (AUROC, 0.708). Incident reports containing deaths were most easily classified, correctly identifying 72.82% of reports. In conclusion, supervised ML can be used to classify patient safety incident report categories. The severity classifier, whilst not accurate enough to replace manual processing, could provide a valuable screening tool for this critical aspect of patient safety.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>30843455</pmid><doi>10.1177/1460458219833102</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5277-2342</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1460-4582 |
ispartof | Health informatics journal, 2020-12, Vol.26 (4), p.3123-3139 |
issn | 1460-4582 1741-2811 |
language | eng |
recordid | cdi_proquest_miscellaneous_2188984908 |
source | Sage Journals GOLD Open Access 2024 |
subjects | Automatic classification Machine learning Patient safety Primary care |
title | Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_AFRWT&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20classification%20of%20primary%20care%20patient%20safety%20incident%20report%20content%20and%20severity%20using%20supervised%20machine%20learning%20(ML)%20approaches&rft.jtitle=Health%20informatics%20journal&rft.au=Evans,%20Huw%20Prosser&rft.date=2020-12&rft.volume=26&rft.issue=4&rft.spage=3123&rft.epage=3139&rft.pages=3123-3139&rft.issn=1460-4582&rft.eissn=1741-2811&rft_id=info:doi/10.1177/1460458219833102&rft_dat=%3Cproquest_AFRWT%3E2188984908%3C/proquest_AFRWT%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470251075&rft_id=info:pmid/30843455&rft_sage_id=10.1177_1460458219833102&rfr_iscdi=true |