Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches

Learning from patient safety incident reports is a vital part of improving healthcare. However, the volume of reports and their largely free-text nature poses a major analytic challenge. The objective of this study was to test the capability of autonomous classifying of free text within patient safe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health informatics journal 2020-12, Vol.26 (4), p.3123-3139
Hauptverfasser: Evans, Huw Prosser, Anastasiou, Athanasios, Edwards, Adrian, Hibbert, Peter, Makeham, Meredith, Luz, Saturnino, Sheikh, Aziz, Donaldson, Liam, Carson-Stevens, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3139
container_issue 4
container_start_page 3123
container_title Health informatics journal
container_volume 26
creator Evans, Huw Prosser
Anastasiou, Athanasios
Edwards, Adrian
Hibbert, Peter
Makeham, Meredith
Luz, Saturnino
Sheikh, Aziz
Donaldson, Liam
Carson-Stevens, Andrew
description Learning from patient safety incident reports is a vital part of improving healthcare. However, the volume of reports and their largely free-text nature poses a major analytic challenge. The objective of this study was to test the capability of autonomous classifying of free text within patient safety incident reports to determine incident type and the severity of harm outcome. Primary care patient safety incident reports (n=31333) previously expert-categorised by clinicians (training data) were processed using J48, SVM and Naïve Bayes. The SVM classifier was the highest scoring classifier for incident type (AUROC, 0.891) and severity of harm (AUROC, 0.708). Incident reports containing deaths were most easily classified, correctly identifying 72.82% of reports. In conclusion, supervised ML can be used to classify patient safety incident report categories. The severity classifier, whilst not accurate enough to replace manual processing, could provide a valuable screening tool for this critical aspect of patient safety.
doi_str_mv 10.1177/1460458219833102
format Article
fullrecord <record><control><sourceid>proquest_AFRWT</sourceid><recordid>TN_cdi_proquest_miscellaneous_2188984908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1460458219833102</sage_id><sourcerecordid>2188984908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-cf4e86338e7a751a7d10b5fe8df0b56031b978331fd11597d54c1c7420c398f43</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVJadK095yCIJf04EZjSSv5GEK_YEsvzdlo5VGiYEuOJAfyJ_qbK7PbFgI9jWbeZ94RM4ScAfsIoNQViA0TUrfQac6Bta_ICSgBTasBjuq7ys2qH5O3OT8wxjiT_A055kwLLqQ8Ib-ulxInU3CgdjQ5e-etKT4GGh2dk59MeqbWJKRzLWMoNBuH5Zn6YP2w5gnnmAq1MZQ1NWGgGZ8w-Qot2Yc7mpcZ05PPdcZk7L0PSEc0Kaza5fftB2rmOcWqYH5HXjszZnx_iKfk9vOnnzdfm-2PL99urreNFUyVxjqBesO5RmWUBKMGYDvpUA-uxg3jsOvUuhI3AMhODVJYsEq0zPJOO8FPyeXetw5-XDCXfvLZ4jiagHHJfQtad1p0TFf04gX6EJcU6u_6VijWSmBKVortKZtizgldf1heD6xfb9W_vFVtOT8YL7sJh78Nf45TgWYPZHOH_6b-1_A3YLGdAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470251075</pqid></control><display><type>article</type><title>Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches</title><source>Sage Journals GOLD Open Access 2024</source><creator>Evans, Huw Prosser ; Anastasiou, Athanasios ; Edwards, Adrian ; Hibbert, Peter ; Makeham, Meredith ; Luz, Saturnino ; Sheikh, Aziz ; Donaldson, Liam ; Carson-Stevens, Andrew</creator><creatorcontrib>Evans, Huw Prosser ; Anastasiou, Athanasios ; Edwards, Adrian ; Hibbert, Peter ; Makeham, Meredith ; Luz, Saturnino ; Sheikh, Aziz ; Donaldson, Liam ; Carson-Stevens, Andrew</creatorcontrib><description>Learning from patient safety incident reports is a vital part of improving healthcare. However, the volume of reports and their largely free-text nature poses a major analytic challenge. The objective of this study was to test the capability of autonomous classifying of free text within patient safety incident reports to determine incident type and the severity of harm outcome. Primary care patient safety incident reports (n=31333) previously expert-categorised by clinicians (training data) were processed using J48, SVM and Naïve Bayes. The SVM classifier was the highest scoring classifier for incident type (AUROC, 0.891) and severity of harm (AUROC, 0.708). Incident reports containing deaths were most easily classified, correctly identifying 72.82% of reports. In conclusion, supervised ML can be used to classify patient safety incident report categories. The severity classifier, whilst not accurate enough to replace manual processing, could provide a valuable screening tool for this critical aspect of patient safety.</description><identifier>ISSN: 1460-4582</identifier><identifier>EISSN: 1741-2811</identifier><identifier>DOI: 10.1177/1460458219833102</identifier><identifier>PMID: 30843455</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Automatic classification ; Machine learning ; Patient safety ; Primary care</subject><ispartof>Health informatics journal, 2020-12, Vol.26 (4), p.3123-3139</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-cf4e86338e7a751a7d10b5fe8df0b56031b978331fd11597d54c1c7420c398f43</citedby><cites>FETCH-LOGICAL-c407t-cf4e86338e7a751a7d10b5fe8df0b56031b978331fd11597d54c1c7420c398f43</cites><orcidid>0000-0001-5277-2342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1460458219833102$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1460458219833102$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,860,21947,27832,27903,27904,44924,45312</link.rule.ids><linktorsrc>$$Uhttps://journals.sagepub.com/doi/full/10.1177/1460458219833102?utm_source=summon&amp;utm_medium=discovery-provider$$EView_record_in_SAGE_Publications$$FView_record_in_$$GSAGE_Publications</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30843455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evans, Huw Prosser</creatorcontrib><creatorcontrib>Anastasiou, Athanasios</creatorcontrib><creatorcontrib>Edwards, Adrian</creatorcontrib><creatorcontrib>Hibbert, Peter</creatorcontrib><creatorcontrib>Makeham, Meredith</creatorcontrib><creatorcontrib>Luz, Saturnino</creatorcontrib><creatorcontrib>Sheikh, Aziz</creatorcontrib><creatorcontrib>Donaldson, Liam</creatorcontrib><creatorcontrib>Carson-Stevens, Andrew</creatorcontrib><title>Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches</title><title>Health informatics journal</title><addtitle>Health Informatics J</addtitle><description>Learning from patient safety incident reports is a vital part of improving healthcare. However, the volume of reports and their largely free-text nature poses a major analytic challenge. The objective of this study was to test the capability of autonomous classifying of free text within patient safety incident reports to determine incident type and the severity of harm outcome. Primary care patient safety incident reports (n=31333) previously expert-categorised by clinicians (training data) were processed using J48, SVM and Naïve Bayes. The SVM classifier was the highest scoring classifier for incident type (AUROC, 0.891) and severity of harm (AUROC, 0.708). Incident reports containing deaths were most easily classified, correctly identifying 72.82% of reports. In conclusion, supervised ML can be used to classify patient safety incident report categories. The severity classifier, whilst not accurate enough to replace manual processing, could provide a valuable screening tool for this critical aspect of patient safety.</description><subject>Automatic classification</subject><subject>Machine learning</subject><subject>Patient safety</subject><subject>Primary care</subject><issn>1460-4582</issn><issn>1741-2811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQhkVJadK095yCIJf04EZjSSv5GEK_YEsvzdlo5VGiYEuOJAfyJ_qbK7PbFgI9jWbeZ94RM4ScAfsIoNQViA0TUrfQac6Bta_ICSgBTasBjuq7ys2qH5O3OT8wxjiT_A055kwLLqQ8Ib-ulxInU3CgdjQ5e-etKT4GGh2dk59MeqbWJKRzLWMoNBuH5Zn6YP2w5gnnmAq1MZQ1NWGgGZ8w-Qot2Yc7mpcZ05PPdcZk7L0PSEc0Kaza5fftB2rmOcWqYH5HXjszZnx_iKfk9vOnnzdfm-2PL99urreNFUyVxjqBesO5RmWUBKMGYDvpUA-uxg3jsOvUuhI3AMhODVJYsEq0zPJOO8FPyeXetw5-XDCXfvLZ4jiagHHJfQtad1p0TFf04gX6EJcU6u_6VijWSmBKVortKZtizgldf1heD6xfb9W_vFVtOT8YL7sJh78Nf45TgWYPZHOH_6b-1_A3YLGdAg</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Evans, Huw Prosser</creator><creator>Anastasiou, Athanasios</creator><creator>Edwards, Adrian</creator><creator>Hibbert, Peter</creator><creator>Makeham, Meredith</creator><creator>Luz, Saturnino</creator><creator>Sheikh, Aziz</creator><creator>Donaldson, Liam</creator><creator>Carson-Stevens, Andrew</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5277-2342</orcidid></search><sort><creationdate>202012</creationdate><title>Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches</title><author>Evans, Huw Prosser ; Anastasiou, Athanasios ; Edwards, Adrian ; Hibbert, Peter ; Makeham, Meredith ; Luz, Saturnino ; Sheikh, Aziz ; Donaldson, Liam ; Carson-Stevens, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-cf4e86338e7a751a7d10b5fe8df0b56031b978331fd11597d54c1c7420c398f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic classification</topic><topic>Machine learning</topic><topic>Patient safety</topic><topic>Primary care</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Huw Prosser</creatorcontrib><creatorcontrib>Anastasiou, Athanasios</creatorcontrib><creatorcontrib>Edwards, Adrian</creatorcontrib><creatorcontrib>Hibbert, Peter</creatorcontrib><creatorcontrib>Makeham, Meredith</creatorcontrib><creatorcontrib>Luz, Saturnino</creatorcontrib><creatorcontrib>Sheikh, Aziz</creatorcontrib><creatorcontrib>Donaldson, Liam</creatorcontrib><creatorcontrib>Carson-Stevens, Andrew</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>MEDLINE - Academic</collection><jtitle>Health informatics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Evans, Huw Prosser</au><au>Anastasiou, Athanasios</au><au>Edwards, Adrian</au><au>Hibbert, Peter</au><au>Makeham, Meredith</au><au>Luz, Saturnino</au><au>Sheikh, Aziz</au><au>Donaldson, Liam</au><au>Carson-Stevens, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches</atitle><jtitle>Health informatics journal</jtitle><addtitle>Health Informatics J</addtitle><date>2020-12</date><risdate>2020</risdate><volume>26</volume><issue>4</issue><spage>3123</spage><epage>3139</epage><pages>3123-3139</pages><issn>1460-4582</issn><eissn>1741-2811</eissn><abstract>Learning from patient safety incident reports is a vital part of improving healthcare. However, the volume of reports and their largely free-text nature poses a major analytic challenge. The objective of this study was to test the capability of autonomous classifying of free text within patient safety incident reports to determine incident type and the severity of harm outcome. Primary care patient safety incident reports (n=31333) previously expert-categorised by clinicians (training data) were processed using J48, SVM and Naïve Bayes. The SVM classifier was the highest scoring classifier for incident type (AUROC, 0.891) and severity of harm (AUROC, 0.708). Incident reports containing deaths were most easily classified, correctly identifying 72.82% of reports. In conclusion, supervised ML can be used to classify patient safety incident report categories. The severity classifier, whilst not accurate enough to replace manual processing, could provide a valuable screening tool for this critical aspect of patient safety.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>30843455</pmid><doi>10.1177/1460458219833102</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5277-2342</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1460-4582
ispartof Health informatics journal, 2020-12, Vol.26 (4), p.3123-3139
issn 1460-4582
1741-2811
language eng
recordid cdi_proquest_miscellaneous_2188984908
source Sage Journals GOLD Open Access 2024
subjects Automatic classification
Machine learning
Patient safety
Primary care
title Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_AFRWT&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20classification%20of%20primary%20care%20patient%20safety%20incident%20report%20content%20and%20severity%20using%20supervised%20machine%20learning%20(ML)%20approaches&rft.jtitle=Health%20informatics%20journal&rft.au=Evans,%20Huw%20Prosser&rft.date=2020-12&rft.volume=26&rft.issue=4&rft.spage=3123&rft.epage=3139&rft.pages=3123-3139&rft.issn=1460-4582&rft.eissn=1741-2811&rft_id=info:doi/10.1177/1460458219833102&rft_dat=%3Cproquest_AFRWT%3E2188984908%3C/proquest_AFRWT%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470251075&rft_id=info:pmid/30843455&rft_sage_id=10.1177_1460458219833102&rfr_iscdi=true