Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products

For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2019-05, Vol.35 (3), p.e2788-n/a
Hauptverfasser: Falkenberg, Heiner, Waldera‐Lupa, Daniel Michael, Vanderlaan, Martin, Schwab, Thomas, Krapfenbauer, Kurt, Studts, Joey Michael, Flad, Thomas, Waerner, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e2788
container_title Biotechnology progress
container_volume 35
creator Falkenberg, Heiner
Waldera‐Lupa, Daniel Michael
Vanderlaan, Martin
Schwab, Thomas
Krapfenbauer, Kurt
Studts, Joey Michael
Flad, Thomas
Waerner, Thomas
description For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process‐related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP‐ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb‐production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up‐ and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in‐process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.
doi_str_mv 10.1002/btpr.2788
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2188593289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239080537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3908-82d5682ce2c0688dd137f63522f93b6bc9889b231f4c95e587cf25d7ccefa3053</originalsourceid><addsrcrecordid>eNp1kc1uFiEUhonR2K_VRW_AkLixi2kZKAOztI39SWo0pq4JwxxSmhkY-WnTK_C2Zfp9dWHiCgjPec6bvAgdtuS4JYSeDHmJx1RI-QptWk5J0xHGXqONFLxrRM_kHtpP6Z4QIklH36I9RkQnTgnboN9fdUo4LWByDDPk6AyGBz0VnV3wOFhclpQj6BlrP-IxPPrdc4nBQJ113k4FfL3jOnAXUsYGpmn9z-A8XnTOEP0K4sGF5U7HWRso2Rn9TI3F5PQOvbF6SvB-dx6gnxdfbs-vmptvl9fnn28aw3oiG0lH3klqgBrSSTmOLRO2Y5xS27OhG0wvZT9Q1tpT03PgUhhL-SiMAasZ4ewAfdp66-JfBVJWs0trXu0hlKRoKyXvGZV9RT_-g96HEn1Npyhd01SdqNTRljIxpBTBqiW6Wccn1RK1tqPWdtTaTmU_7IxlmGH8S77UUYGTLfDoJnj6v0md3X7_8az8A1zknQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239080537</pqid></control><display><type>article</type><title>Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Falkenberg, Heiner ; Waldera‐Lupa, Daniel Michael ; Vanderlaan, Martin ; Schwab, Thomas ; Krapfenbauer, Kurt ; Studts, Joey Michael ; Flad, Thomas ; Waerner, Thomas</creator><creatorcontrib>Falkenberg, Heiner ; Waldera‐Lupa, Daniel Michael ; Vanderlaan, Martin ; Schwab, Thomas ; Krapfenbauer, Kurt ; Studts, Joey Michael ; Flad, Thomas ; Waerner, Thomas</creatorcontrib><description>For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process‐related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP‐ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb‐production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up‐ and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in‐process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2788</identifier><identifier>PMID: 30767403</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Antibodies, Monoclonal - genetics ; Antibodies, Monoclonal - isolation &amp; purification ; Antibodies, Monoclonal - metabolism ; Biodiversity ; Biopharmaceuticals ; Cell culture ; Cell Culture Techniques ; CHO Cells - chemistry ; CHO Cells - metabolism ; Cricetinae ; Cricetulus ; Downstream ; Electrophoresis ; Electrophoresis, Gel, Two-Dimensional ; ELISA ; Enzyme-Linked Immunosorbent Assay ; Fermentation ; Gel electrophoresis ; host cell protein ; Immunoassay ; Manufacturing industry ; Mass spectrometry ; Mass Spectrometry - methods ; Mass spectroscopy ; Monoclonal antibodies ; Pattern analysis ; Process control ; Process controls ; Process parameters ; Product safety ; Proteins ; Proteins - chemistry ; Proteomics ; Quality management ; Shotguns ; Species diversity ; Strategy ; Upstream</subject><ispartof>Biotechnology progress, 2019-05, Vol.35 (3), p.e2788-n/a</ispartof><rights>2019 American Institute of Chemical Engineers</rights><rights>2019 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3908-82d5682ce2c0688dd137f63522f93b6bc9889b231f4c95e587cf25d7ccefa3053</citedby><cites>FETCH-LOGICAL-c3908-82d5682ce2c0688dd137f63522f93b6bc9889b231f4c95e587cf25d7ccefa3053</cites><orcidid>0000-0003-4298-1292 ; 0000-0002-0763-5215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2788$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2788$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30767403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falkenberg, Heiner</creatorcontrib><creatorcontrib>Waldera‐Lupa, Daniel Michael</creatorcontrib><creatorcontrib>Vanderlaan, Martin</creatorcontrib><creatorcontrib>Schwab, Thomas</creatorcontrib><creatorcontrib>Krapfenbauer, Kurt</creatorcontrib><creatorcontrib>Studts, Joey Michael</creatorcontrib><creatorcontrib>Flad, Thomas</creatorcontrib><creatorcontrib>Waerner, Thomas</creatorcontrib><title>Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process‐related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP‐ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb‐production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up‐ and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in‐process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.</description><subject>Animals</subject><subject>Antibodies, Monoclonal - genetics</subject><subject>Antibodies, Monoclonal - isolation &amp; purification</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Biodiversity</subject><subject>Biopharmaceuticals</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>CHO Cells - chemistry</subject><subject>CHO Cells - metabolism</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Downstream</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Gel, Two-Dimensional</subject><subject>ELISA</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Fermentation</subject><subject>Gel electrophoresis</subject><subject>host cell protein</subject><subject>Immunoassay</subject><subject>Manufacturing industry</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Monoclonal antibodies</subject><subject>Pattern analysis</subject><subject>Process control</subject><subject>Process controls</subject><subject>Process parameters</subject><subject>Product safety</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteomics</subject><subject>Quality management</subject><subject>Shotguns</subject><subject>Species diversity</subject><subject>Strategy</subject><subject>Upstream</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uFiEUhonR2K_VRW_AkLixi2kZKAOztI39SWo0pq4JwxxSmhkY-WnTK_C2Zfp9dWHiCgjPec6bvAgdtuS4JYSeDHmJx1RI-QptWk5J0xHGXqONFLxrRM_kHtpP6Z4QIklH36I9RkQnTgnboN9fdUo4LWByDDPk6AyGBz0VnV3wOFhclpQj6BlrP-IxPPrdc4nBQJ113k4FfL3jOnAXUsYGpmn9z-A8XnTOEP0K4sGF5U7HWRso2Rn9TI3F5PQOvbF6SvB-dx6gnxdfbs-vmptvl9fnn28aw3oiG0lH3klqgBrSSTmOLRO2Y5xS27OhG0wvZT9Q1tpT03PgUhhL-SiMAasZ4ewAfdp66-JfBVJWs0trXu0hlKRoKyXvGZV9RT_-g96HEn1Npyhd01SdqNTRljIxpBTBqiW6Wccn1RK1tqPWdtTaTmU_7IxlmGH8S77UUYGTLfDoJnj6v0md3X7_8az8A1zknQ0</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Falkenberg, Heiner</creator><creator>Waldera‐Lupa, Daniel Michael</creator><creator>Vanderlaan, Martin</creator><creator>Schwab, Thomas</creator><creator>Krapfenbauer, Kurt</creator><creator>Studts, Joey Michael</creator><creator>Flad, Thomas</creator><creator>Waerner, Thomas</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4298-1292</orcidid><orcidid>https://orcid.org/0000-0002-0763-5215</orcidid></search><sort><creationdate>201905</creationdate><title>Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products</title><author>Falkenberg, Heiner ; Waldera‐Lupa, Daniel Michael ; Vanderlaan, Martin ; Schwab, Thomas ; Krapfenbauer, Kurt ; Studts, Joey Michael ; Flad, Thomas ; Waerner, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3908-82d5682ce2c0688dd137f63522f93b6bc9889b231f4c95e587cf25d7ccefa3053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal - genetics</topic><topic>Antibodies, Monoclonal - isolation &amp; purification</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Biodiversity</topic><topic>Biopharmaceuticals</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>CHO Cells - chemistry</topic><topic>CHO Cells - metabolism</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Downstream</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Gel, Two-Dimensional</topic><topic>ELISA</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Fermentation</topic><topic>Gel electrophoresis</topic><topic>host cell protein</topic><topic>Immunoassay</topic><topic>Manufacturing industry</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Monoclonal antibodies</topic><topic>Pattern analysis</topic><topic>Process control</topic><topic>Process controls</topic><topic>Process parameters</topic><topic>Product safety</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteomics</topic><topic>Quality management</topic><topic>Shotguns</topic><topic>Species diversity</topic><topic>Strategy</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falkenberg, Heiner</creatorcontrib><creatorcontrib>Waldera‐Lupa, Daniel Michael</creatorcontrib><creatorcontrib>Vanderlaan, Martin</creatorcontrib><creatorcontrib>Schwab, Thomas</creatorcontrib><creatorcontrib>Krapfenbauer, Kurt</creatorcontrib><creatorcontrib>Studts, Joey Michael</creatorcontrib><creatorcontrib>Flad, Thomas</creatorcontrib><creatorcontrib>Waerner, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falkenberg, Heiner</au><au>Waldera‐Lupa, Daniel Michael</au><au>Vanderlaan, Martin</au><au>Schwab, Thomas</au><au>Krapfenbauer, Kurt</au><au>Studts, Joey Michael</au><au>Flad, Thomas</au><au>Waerner, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2019-05</date><risdate>2019</risdate><volume>35</volume><issue>3</issue><spage>e2788</spage><epage>n/a</epage><pages>e2788-n/a</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process‐related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP‐ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb‐production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up‐ and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in‐process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30767403</pmid><doi>10.1002/btpr.2788</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4298-1292</orcidid><orcidid>https://orcid.org/0000-0002-0763-5215</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2019-05, Vol.35 (3), p.e2788-n/a
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_2188593289
source MEDLINE; Access via Wiley Online Library
subjects Animals
Antibodies, Monoclonal - genetics
Antibodies, Monoclonal - isolation & purification
Antibodies, Monoclonal - metabolism
Biodiversity
Biopharmaceuticals
Cell culture
Cell Culture Techniques
CHO Cells - chemistry
CHO Cells - metabolism
Cricetinae
Cricetulus
Downstream
Electrophoresis
Electrophoresis, Gel, Two-Dimensional
ELISA
Enzyme-Linked Immunosorbent Assay
Fermentation
Gel electrophoresis
host cell protein
Immunoassay
Manufacturing industry
Mass spectrometry
Mass Spectrometry - methods
Mass spectroscopy
Monoclonal antibodies
Pattern analysis
Process control
Process controls
Process parameters
Product safety
Proteins
Proteins - chemistry
Proteomics
Quality management
Shotguns
Species diversity
Strategy
Upstream
title Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20spectrometric%20evaluation%20of%20upstream%20and%20downstream%20process%20influences%20on%20host%20cell%20protein%20patterns%20in%20biopharmaceutical%20products&rft.jtitle=Biotechnology%20progress&rft.au=Falkenberg,%20Heiner&rft.date=2019-05&rft.volume=35&rft.issue=3&rft.spage=e2788&rft.epage=n/a&rft.pages=e2788-n/a&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2788&rft_dat=%3Cproquest_cross%3E2239080537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239080537&rft_id=info:pmid/30767403&rfr_iscdi=true