Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products
For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2019-05, Vol.35 (3), p.e2788-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e2788 |
container_title | Biotechnology progress |
container_volume | 35 |
creator | Falkenberg, Heiner Waldera‐Lupa, Daniel Michael Vanderlaan, Martin Schwab, Thomas Krapfenbauer, Kurt Studts, Joey Michael Flad, Thomas Waerner, Thomas |
description | For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process‐related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP‐ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb‐production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up‐ and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in‐process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products. |
doi_str_mv | 10.1002/btpr.2788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2188593289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239080537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3908-82d5682ce2c0688dd137f63522f93b6bc9889b231f4c95e587cf25d7ccefa3053</originalsourceid><addsrcrecordid>eNp1kc1uFiEUhonR2K_VRW_AkLixi2kZKAOztI39SWo0pq4JwxxSmhkY-WnTK_C2Zfp9dWHiCgjPec6bvAgdtuS4JYSeDHmJx1RI-QptWk5J0xHGXqONFLxrRM_kHtpP6Z4QIklH36I9RkQnTgnboN9fdUo4LWByDDPk6AyGBz0VnV3wOFhclpQj6BlrP-IxPPrdc4nBQJ113k4FfL3jOnAXUsYGpmn9z-A8XnTOEP0K4sGF5U7HWRso2Rn9TI3F5PQOvbF6SvB-dx6gnxdfbs-vmptvl9fnn28aw3oiG0lH3klqgBrSSTmOLRO2Y5xS27OhG0wvZT9Q1tpT03PgUhhL-SiMAasZ4ewAfdp66-JfBVJWs0trXu0hlKRoKyXvGZV9RT_-g96HEn1Npyhd01SdqNTRljIxpBTBqiW6Wccn1RK1tqPWdtTaTmU_7IxlmGH8S77UUYGTLfDoJnj6v0md3X7_8az8A1zknQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239080537</pqid></control><display><type>article</type><title>Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Falkenberg, Heiner ; Waldera‐Lupa, Daniel Michael ; Vanderlaan, Martin ; Schwab, Thomas ; Krapfenbauer, Kurt ; Studts, Joey Michael ; Flad, Thomas ; Waerner, Thomas</creator><creatorcontrib>Falkenberg, Heiner ; Waldera‐Lupa, Daniel Michael ; Vanderlaan, Martin ; Schwab, Thomas ; Krapfenbauer, Kurt ; Studts, Joey Michael ; Flad, Thomas ; Waerner, Thomas</creatorcontrib><description>For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process‐related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP‐ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb‐production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up‐ and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in‐process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2788</identifier><identifier>PMID: 30767403</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Antibodies, Monoclonal - genetics ; Antibodies, Monoclonal - isolation & purification ; Antibodies, Monoclonal - metabolism ; Biodiversity ; Biopharmaceuticals ; Cell culture ; Cell Culture Techniques ; CHO Cells - chemistry ; CHO Cells - metabolism ; Cricetinae ; Cricetulus ; Downstream ; Electrophoresis ; Electrophoresis, Gel, Two-Dimensional ; ELISA ; Enzyme-Linked Immunosorbent Assay ; Fermentation ; Gel electrophoresis ; host cell protein ; Immunoassay ; Manufacturing industry ; Mass spectrometry ; Mass Spectrometry - methods ; Mass spectroscopy ; Monoclonal antibodies ; Pattern analysis ; Process control ; Process controls ; Process parameters ; Product safety ; Proteins ; Proteins - chemistry ; Proteomics ; Quality management ; Shotguns ; Species diversity ; Strategy ; Upstream</subject><ispartof>Biotechnology progress, 2019-05, Vol.35 (3), p.e2788-n/a</ispartof><rights>2019 American Institute of Chemical Engineers</rights><rights>2019 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3908-82d5682ce2c0688dd137f63522f93b6bc9889b231f4c95e587cf25d7ccefa3053</citedby><cites>FETCH-LOGICAL-c3908-82d5682ce2c0688dd137f63522f93b6bc9889b231f4c95e587cf25d7ccefa3053</cites><orcidid>0000-0003-4298-1292 ; 0000-0002-0763-5215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2788$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2788$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30767403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falkenberg, Heiner</creatorcontrib><creatorcontrib>Waldera‐Lupa, Daniel Michael</creatorcontrib><creatorcontrib>Vanderlaan, Martin</creatorcontrib><creatorcontrib>Schwab, Thomas</creatorcontrib><creatorcontrib>Krapfenbauer, Kurt</creatorcontrib><creatorcontrib>Studts, Joey Michael</creatorcontrib><creatorcontrib>Flad, Thomas</creatorcontrib><creatorcontrib>Waerner, Thomas</creatorcontrib><title>Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process‐related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP‐ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb‐production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up‐ and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in‐process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.</description><subject>Animals</subject><subject>Antibodies, Monoclonal - genetics</subject><subject>Antibodies, Monoclonal - isolation & purification</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Biodiversity</subject><subject>Biopharmaceuticals</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>CHO Cells - chemistry</subject><subject>CHO Cells - metabolism</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Downstream</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Gel, Two-Dimensional</subject><subject>ELISA</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Fermentation</subject><subject>Gel electrophoresis</subject><subject>host cell protein</subject><subject>Immunoassay</subject><subject>Manufacturing industry</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Monoclonal antibodies</subject><subject>Pattern analysis</subject><subject>Process control</subject><subject>Process controls</subject><subject>Process parameters</subject><subject>Product safety</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteomics</subject><subject>Quality management</subject><subject>Shotguns</subject><subject>Species diversity</subject><subject>Strategy</subject><subject>Upstream</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uFiEUhonR2K_VRW_AkLixi2kZKAOztI39SWo0pq4JwxxSmhkY-WnTK_C2Zfp9dWHiCgjPec6bvAgdtuS4JYSeDHmJx1RI-QptWk5J0xHGXqONFLxrRM_kHtpP6Z4QIklH36I9RkQnTgnboN9fdUo4LWByDDPk6AyGBz0VnV3wOFhclpQj6BlrP-IxPPrdc4nBQJ113k4FfL3jOnAXUsYGpmn9z-A8XnTOEP0K4sGF5U7HWRso2Rn9TI3F5PQOvbF6SvB-dx6gnxdfbs-vmptvl9fnn28aw3oiG0lH3klqgBrSSTmOLRO2Y5xS27OhG0wvZT9Q1tpT03PgUhhL-SiMAasZ4ewAfdp66-JfBVJWs0trXu0hlKRoKyXvGZV9RT_-g96HEn1Npyhd01SdqNTRljIxpBTBqiW6Wccn1RK1tqPWdtTaTmU_7IxlmGH8S77UUYGTLfDoJnj6v0md3X7_8az8A1zknQ0</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Falkenberg, Heiner</creator><creator>Waldera‐Lupa, Daniel Michael</creator><creator>Vanderlaan, Martin</creator><creator>Schwab, Thomas</creator><creator>Krapfenbauer, Kurt</creator><creator>Studts, Joey Michael</creator><creator>Flad, Thomas</creator><creator>Waerner, Thomas</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4298-1292</orcidid><orcidid>https://orcid.org/0000-0002-0763-5215</orcidid></search><sort><creationdate>201905</creationdate><title>Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products</title><author>Falkenberg, Heiner ; Waldera‐Lupa, Daniel Michael ; Vanderlaan, Martin ; Schwab, Thomas ; Krapfenbauer, Kurt ; Studts, Joey Michael ; Flad, Thomas ; Waerner, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3908-82d5682ce2c0688dd137f63522f93b6bc9889b231f4c95e587cf25d7ccefa3053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal - genetics</topic><topic>Antibodies, Monoclonal - isolation & purification</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Biodiversity</topic><topic>Biopharmaceuticals</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>CHO Cells - chemistry</topic><topic>CHO Cells - metabolism</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Downstream</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Gel, Two-Dimensional</topic><topic>ELISA</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Fermentation</topic><topic>Gel electrophoresis</topic><topic>host cell protein</topic><topic>Immunoassay</topic><topic>Manufacturing industry</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Monoclonal antibodies</topic><topic>Pattern analysis</topic><topic>Process control</topic><topic>Process controls</topic><topic>Process parameters</topic><topic>Product safety</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteomics</topic><topic>Quality management</topic><topic>Shotguns</topic><topic>Species diversity</topic><topic>Strategy</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falkenberg, Heiner</creatorcontrib><creatorcontrib>Waldera‐Lupa, Daniel Michael</creatorcontrib><creatorcontrib>Vanderlaan, Martin</creatorcontrib><creatorcontrib>Schwab, Thomas</creatorcontrib><creatorcontrib>Krapfenbauer, Kurt</creatorcontrib><creatorcontrib>Studts, Joey Michael</creatorcontrib><creatorcontrib>Flad, Thomas</creatorcontrib><creatorcontrib>Waerner, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falkenberg, Heiner</au><au>Waldera‐Lupa, Daniel Michael</au><au>Vanderlaan, Martin</au><au>Schwab, Thomas</au><au>Krapfenbauer, Kurt</au><au>Studts, Joey Michael</au><au>Flad, Thomas</au><au>Waerner, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2019-05</date><risdate>2019</risdate><volume>35</volume><issue>3</issue><spage>e2788</spage><epage>n/a</epage><pages>e2788-n/a</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process‐related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP‐ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb‐production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up‐ and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in‐process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30767403</pmid><doi>10.1002/btpr.2788</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4298-1292</orcidid><orcidid>https://orcid.org/0000-0002-0763-5215</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2019-05, Vol.35 (3), p.e2788-n/a |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_2188593289 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Antibodies, Monoclonal - genetics Antibodies, Monoclonal - isolation & purification Antibodies, Monoclonal - metabolism Biodiversity Biopharmaceuticals Cell culture Cell Culture Techniques CHO Cells - chemistry CHO Cells - metabolism Cricetinae Cricetulus Downstream Electrophoresis Electrophoresis, Gel, Two-Dimensional ELISA Enzyme-Linked Immunosorbent Assay Fermentation Gel electrophoresis host cell protein Immunoassay Manufacturing industry Mass spectrometry Mass Spectrometry - methods Mass spectroscopy Monoclonal antibodies Pattern analysis Process control Process controls Process parameters Product safety Proteins Proteins - chemistry Proteomics Quality management Shotguns Species diversity Strategy Upstream |
title | Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20spectrometric%20evaluation%20of%20upstream%20and%20downstream%20process%20influences%20on%20host%20cell%20protein%20patterns%20in%20biopharmaceutical%20products&rft.jtitle=Biotechnology%20progress&rft.au=Falkenberg,%20Heiner&rft.date=2019-05&rft.volume=35&rft.issue=3&rft.spage=e2788&rft.epage=n/a&rft.pages=e2788-n/a&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2788&rft_dat=%3Cproquest_cross%3E2239080537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239080537&rft_id=info:pmid/30767403&rfr_iscdi=true |