3D Plotted Biphasic Bone Scaffolds for Growth Factor Delivery: Biological Characterization In Vitro and In Vivo

Bioprinting enables the integration of biological components into scaffolds during fabrication that has the advantage of high loading efficiency and better control of release and/or spatial positioning. In this study, a biphasic scaffold fabricated by extrusion‐based 3D multichannel plotting of a ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2019-04, Vol.8 (7), p.e1801512-n/a
Hauptverfasser: Ahlfeld, Tilman, Schuster, Felix Paul, Förster, Yvonne, Quade, Mandy, Akkineni, Ashwini Rahul, Rentsch, Claudia, Rammelt, Stefan, Gelinsky, Michael, Lode, Anja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e1801512
container_title Advanced healthcare materials
container_volume 8
creator Ahlfeld, Tilman
Schuster, Felix Paul
Förster, Yvonne
Quade, Mandy
Akkineni, Ashwini Rahul
Rentsch, Claudia
Rammelt, Stefan
Gelinsky, Michael
Lode, Anja
description Bioprinting enables the integration of biological components into scaffolds during fabrication that has the advantage of high loading efficiency and better control of release and/or spatial positioning. In this study, a biphasic scaffold fabricated by extrusion‐based 3D multichannel plotting of a calcium phosphate cement (CPC) paste and an alginate/gellan gum (AlgGG) hydrogel paste laden with the angiogenic factor VEGF (vascular endothelial growth factor) is investigated with regard to biological response in vitro and in vivo. Rat mesenchymal stromal cells are able to adhere and grow on both CPC and AlgGG strands, and differentiate toward osteoblasts. A sustained VEGF release is observed, which is able to stimulate endothelial cell proliferation as well as angiogenesis in vitro that indicates maintenance of its biological activity. After implantation into a segmental bone defect in the femur diaphysis of rats, a clear reduction of the defect size by newly formed bone tissue occurs from the distal and proximal ends of the host bone within 12 weeks. The CPC component shows excellent osteoconductivity whereas the local VEGF release from the AlgGG hydrogel gives rise to an enhanced vascularization of the defect region. This work contributes to the development of novel therapeutic concepts for improved bone regeneration which are based on 3D bioprinting. 3D extrusion‐based bioprinting is a promising method to fabricate precisely fitting implants containing biological factors for bone regeneration. Herein, hybrid scaffolds consisting of a calcium phosphate cement (CPC) and a biomaterial ink laden with a pro‐angiogenic growth factor are fabricated and investigated in vitro and in vivo. The results show biocompatibility, new bone formation along CPC, and improved vascularization of the scaffolds.
doi_str_mv 10.1002/adhm.201801512
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2188587288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206256089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-9d1841d69c727b90d14c93a17b9dd8dd1564bfa96c5dd3039848163d081394b53</originalsourceid><addsrcrecordid>eNqFkU1PIzEMhiO0CBBw5YgicdlLS5zMZJK9QcuXBAKJj2uUJpltUDopyRRUfj1BhSLtZX2xLT9-ZflF6ADIEAihx9pOZ0NKQBCogW6gHQqSDiiv5a91XZFttJ_zMynBa-ACttA2I4KJphE7KLIxvgux753Fp34-1dkbfBo7h--NbtsYbMZtTPgixbd-is-16Us3dsG_urT8U3ZiiH-90QGPpjqVsUv-Xfc-dviqw0--TxHrzq6a17iHNlsdstv_yrvo8fzsYXQ5uL69uBqdXA9MBYQOpAVRgeXSNLSZSGKhMpJpKLW1wlqoeTVpteSmtpYRJkUlgDNLBDBZTWq2i36vdOcpvixc7tXMZ-NC0J2Li6woCFGLhgpR0KN_0Oe4SF25TlFKOK05EbJQwxVlUsw5uVbNk5_ptFRA1Kcb6tMNtXajLBx-yS4mM2fX-PfvCyBXwJsPbvkfOXUyvrz5Ef8Ahy-UAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206256089</pqid></control><display><type>article</type><title>3D Plotted Biphasic Bone Scaffolds for Growth Factor Delivery: Biological Characterization In Vitro and In Vivo</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ahlfeld, Tilman ; Schuster, Felix Paul ; Förster, Yvonne ; Quade, Mandy ; Akkineni, Ashwini Rahul ; Rentsch, Claudia ; Rammelt, Stefan ; Gelinsky, Michael ; Lode, Anja</creator><creatorcontrib>Ahlfeld, Tilman ; Schuster, Felix Paul ; Förster, Yvonne ; Quade, Mandy ; Akkineni, Ashwini Rahul ; Rentsch, Claudia ; Rammelt, Stefan ; Gelinsky, Michael ; Lode, Anja</creatorcontrib><description>Bioprinting enables the integration of biological components into scaffolds during fabrication that has the advantage of high loading efficiency and better control of release and/or spatial positioning. In this study, a biphasic scaffold fabricated by extrusion‐based 3D multichannel plotting of a calcium phosphate cement (CPC) paste and an alginate/gellan gum (AlgGG) hydrogel paste laden with the angiogenic factor VEGF (vascular endothelial growth factor) is investigated with regard to biological response in vitro and in vivo. Rat mesenchymal stromal cells are able to adhere and grow on both CPC and AlgGG strands, and differentiate toward osteoblasts. A sustained VEGF release is observed, which is able to stimulate endothelial cell proliferation as well as angiogenesis in vitro that indicates maintenance of its biological activity. After implantation into a segmental bone defect in the femur diaphysis of rats, a clear reduction of the defect size by newly formed bone tissue occurs from the distal and proximal ends of the host bone within 12 weeks. The CPC component shows excellent osteoconductivity whereas the local VEGF release from the AlgGG hydrogel gives rise to an enhanced vascularization of the defect region. This work contributes to the development of novel therapeutic concepts for improved bone regeneration which are based on 3D bioprinting. 3D extrusion‐based bioprinting is a promising method to fabricate precisely fitting implants containing biological factors for bone regeneration. Herein, hybrid scaffolds consisting of a calcium phosphate cement (CPC) and a biomaterial ink laden with a pro‐angiogenic growth factor are fabricated and investigated in vitro and in vivo. The results show biocompatibility, new bone formation along CPC, and improved vascularization of the scaffolds.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201801512</identifier><identifier>PMID: 30838778</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alginates ; Alginic acid ; Angiogenesis ; Biocompatibility ; Biological activity ; Biomedical materials ; bone formation ; Bone growth ; Calcium ; calcium phosphate cement ; Calcium phosphates ; Cell proliferation ; Defects ; Diaphysis ; Endothelial cells ; Extrusion ; Fabrication ; Femur ; Gellan gum ; Growth factors ; Hydrogels ; Implantation ; In vivo methods and tests ; Mechanical loading ; Mesenchyme ; multichannel 3D plotting ; Osteoblasts ; Osteoconduction ; osteogenic differentiation ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Stromal cells ; Surgical implants ; Three dimensional printing ; Tissue engineering ; Vascular endothelial growth factor ; Vascularization ; VEGF</subject><ispartof>Advanced healthcare materials, 2019-04, Vol.8 (7), p.e1801512-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-9d1841d69c727b90d14c93a17b9dd8dd1564bfa96c5dd3039848163d081394b53</citedby><cites>FETCH-LOGICAL-c4102-9d1841d69c727b90d14c93a17b9dd8dd1564bfa96c5dd3039848163d081394b53</cites><orcidid>0000-0001-7704-6435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201801512$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201801512$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30838778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahlfeld, Tilman</creatorcontrib><creatorcontrib>Schuster, Felix Paul</creatorcontrib><creatorcontrib>Förster, Yvonne</creatorcontrib><creatorcontrib>Quade, Mandy</creatorcontrib><creatorcontrib>Akkineni, Ashwini Rahul</creatorcontrib><creatorcontrib>Rentsch, Claudia</creatorcontrib><creatorcontrib>Rammelt, Stefan</creatorcontrib><creatorcontrib>Gelinsky, Michael</creatorcontrib><creatorcontrib>Lode, Anja</creatorcontrib><title>3D Plotted Biphasic Bone Scaffolds for Growth Factor Delivery: Biological Characterization In Vitro and In Vivo</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Bioprinting enables the integration of biological components into scaffolds during fabrication that has the advantage of high loading efficiency and better control of release and/or spatial positioning. In this study, a biphasic scaffold fabricated by extrusion‐based 3D multichannel plotting of a calcium phosphate cement (CPC) paste and an alginate/gellan gum (AlgGG) hydrogel paste laden with the angiogenic factor VEGF (vascular endothelial growth factor) is investigated with regard to biological response in vitro and in vivo. Rat mesenchymal stromal cells are able to adhere and grow on both CPC and AlgGG strands, and differentiate toward osteoblasts. A sustained VEGF release is observed, which is able to stimulate endothelial cell proliferation as well as angiogenesis in vitro that indicates maintenance of its biological activity. After implantation into a segmental bone defect in the femur diaphysis of rats, a clear reduction of the defect size by newly formed bone tissue occurs from the distal and proximal ends of the host bone within 12 weeks. The CPC component shows excellent osteoconductivity whereas the local VEGF release from the AlgGG hydrogel gives rise to an enhanced vascularization of the defect region. This work contributes to the development of novel therapeutic concepts for improved bone regeneration which are based on 3D bioprinting. 3D extrusion‐based bioprinting is a promising method to fabricate precisely fitting implants containing biological factors for bone regeneration. Herein, hybrid scaffolds consisting of a calcium phosphate cement (CPC) and a biomaterial ink laden with a pro‐angiogenic growth factor are fabricated and investigated in vitro and in vivo. The results show biocompatibility, new bone formation along CPC, and improved vascularization of the scaffolds.</description><subject>Alginates</subject><subject>Alginic acid</subject><subject>Angiogenesis</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>bone formation</subject><subject>Bone growth</subject><subject>Calcium</subject><subject>calcium phosphate cement</subject><subject>Calcium phosphates</subject><subject>Cell proliferation</subject><subject>Defects</subject><subject>Diaphysis</subject><subject>Endothelial cells</subject><subject>Extrusion</subject><subject>Fabrication</subject><subject>Femur</subject><subject>Gellan gum</subject><subject>Growth factors</subject><subject>Hydrogels</subject><subject>Implantation</subject><subject>In vivo methods and tests</subject><subject>Mechanical loading</subject><subject>Mesenchyme</subject><subject>multichannel 3D plotting</subject><subject>Osteoblasts</subject><subject>Osteoconduction</subject><subject>osteogenic differentiation</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Stromal cells</subject><subject>Surgical implants</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Vascular endothelial growth factor</subject><subject>Vascularization</subject><subject>VEGF</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PIzEMhiO0CBBw5YgicdlLS5zMZJK9QcuXBAKJj2uUJpltUDopyRRUfj1BhSLtZX2xLT9-ZflF6ADIEAihx9pOZ0NKQBCogW6gHQqSDiiv5a91XZFttJ_zMynBa-ACttA2I4KJphE7KLIxvgux753Fp34-1dkbfBo7h--NbtsYbMZtTPgixbd-is-16Us3dsG_urT8U3ZiiH-90QGPpjqVsUv-Xfc-dviqw0--TxHrzq6a17iHNlsdstv_yrvo8fzsYXQ5uL69uBqdXA9MBYQOpAVRgeXSNLSZSGKhMpJpKLW1wlqoeTVpteSmtpYRJkUlgDNLBDBZTWq2i36vdOcpvixc7tXMZ-NC0J2Li6woCFGLhgpR0KN_0Oe4SF25TlFKOK05EbJQwxVlUsw5uVbNk5_ptFRA1Kcb6tMNtXajLBx-yS4mM2fX-PfvCyBXwJsPbvkfOXUyvrz5Ef8Ahy-UAg</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Ahlfeld, Tilman</creator><creator>Schuster, Felix Paul</creator><creator>Förster, Yvonne</creator><creator>Quade, Mandy</creator><creator>Akkineni, Ashwini Rahul</creator><creator>Rentsch, Claudia</creator><creator>Rammelt, Stefan</creator><creator>Gelinsky, Michael</creator><creator>Lode, Anja</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7704-6435</orcidid></search><sort><creationdate>201904</creationdate><title>3D Plotted Biphasic Bone Scaffolds for Growth Factor Delivery: Biological Characterization In Vitro and In Vivo</title><author>Ahlfeld, Tilman ; Schuster, Felix Paul ; Förster, Yvonne ; Quade, Mandy ; Akkineni, Ashwini Rahul ; Rentsch, Claudia ; Rammelt, Stefan ; Gelinsky, Michael ; Lode, Anja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-9d1841d69c727b90d14c93a17b9dd8dd1564bfa96c5dd3039848163d081394b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alginates</topic><topic>Alginic acid</topic><topic>Angiogenesis</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>bone formation</topic><topic>Bone growth</topic><topic>Calcium</topic><topic>calcium phosphate cement</topic><topic>Calcium phosphates</topic><topic>Cell proliferation</topic><topic>Defects</topic><topic>Diaphysis</topic><topic>Endothelial cells</topic><topic>Extrusion</topic><topic>Fabrication</topic><topic>Femur</topic><topic>Gellan gum</topic><topic>Growth factors</topic><topic>Hydrogels</topic><topic>Implantation</topic><topic>In vivo methods and tests</topic><topic>Mechanical loading</topic><topic>Mesenchyme</topic><topic>multichannel 3D plotting</topic><topic>Osteoblasts</topic><topic>Osteoconduction</topic><topic>osteogenic differentiation</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Stromal cells</topic><topic>Surgical implants</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Vascular endothelial growth factor</topic><topic>Vascularization</topic><topic>VEGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahlfeld, Tilman</creatorcontrib><creatorcontrib>Schuster, Felix Paul</creatorcontrib><creatorcontrib>Förster, Yvonne</creatorcontrib><creatorcontrib>Quade, Mandy</creatorcontrib><creatorcontrib>Akkineni, Ashwini Rahul</creatorcontrib><creatorcontrib>Rentsch, Claudia</creatorcontrib><creatorcontrib>Rammelt, Stefan</creatorcontrib><creatorcontrib>Gelinsky, Michael</creatorcontrib><creatorcontrib>Lode, Anja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahlfeld, Tilman</au><au>Schuster, Felix Paul</au><au>Förster, Yvonne</au><au>Quade, Mandy</au><au>Akkineni, Ashwini Rahul</au><au>Rentsch, Claudia</au><au>Rammelt, Stefan</au><au>Gelinsky, Michael</au><au>Lode, Anja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Plotted Biphasic Bone Scaffolds for Growth Factor Delivery: Biological Characterization In Vitro and In Vivo</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2019-04</date><risdate>2019</risdate><volume>8</volume><issue>7</issue><spage>e1801512</spage><epage>n/a</epage><pages>e1801512-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Bioprinting enables the integration of biological components into scaffolds during fabrication that has the advantage of high loading efficiency and better control of release and/or spatial positioning. In this study, a biphasic scaffold fabricated by extrusion‐based 3D multichannel plotting of a calcium phosphate cement (CPC) paste and an alginate/gellan gum (AlgGG) hydrogel paste laden with the angiogenic factor VEGF (vascular endothelial growth factor) is investigated with regard to biological response in vitro and in vivo. Rat mesenchymal stromal cells are able to adhere and grow on both CPC and AlgGG strands, and differentiate toward osteoblasts. A sustained VEGF release is observed, which is able to stimulate endothelial cell proliferation as well as angiogenesis in vitro that indicates maintenance of its biological activity. After implantation into a segmental bone defect in the femur diaphysis of rats, a clear reduction of the defect size by newly formed bone tissue occurs from the distal and proximal ends of the host bone within 12 weeks. The CPC component shows excellent osteoconductivity whereas the local VEGF release from the AlgGG hydrogel gives rise to an enhanced vascularization of the defect region. This work contributes to the development of novel therapeutic concepts for improved bone regeneration which are based on 3D bioprinting. 3D extrusion‐based bioprinting is a promising method to fabricate precisely fitting implants containing biological factors for bone regeneration. Herein, hybrid scaffolds consisting of a calcium phosphate cement (CPC) and a biomaterial ink laden with a pro‐angiogenic growth factor are fabricated and investigated in vitro and in vivo. The results show biocompatibility, new bone formation along CPC, and improved vascularization of the scaffolds.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30838778</pmid><doi>10.1002/adhm.201801512</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7704-6435</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2019-04, Vol.8 (7), p.e1801512-n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_2188587288
source Wiley Online Library Journals Frontfile Complete
subjects Alginates
Alginic acid
Angiogenesis
Biocompatibility
Biological activity
Biomedical materials
bone formation
Bone growth
Calcium
calcium phosphate cement
Calcium phosphates
Cell proliferation
Defects
Diaphysis
Endothelial cells
Extrusion
Fabrication
Femur
Gellan gum
Growth factors
Hydrogels
Implantation
In vivo methods and tests
Mechanical loading
Mesenchyme
multichannel 3D plotting
Osteoblasts
Osteoconduction
osteogenic differentiation
Regeneration
Regeneration (physiology)
Scaffolds
Stromal cells
Surgical implants
Three dimensional printing
Tissue engineering
Vascular endothelial growth factor
Vascularization
VEGF
title 3D Plotted Biphasic Bone Scaffolds for Growth Factor Delivery: Biological Characterization In Vitro and In Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Plotted%20Biphasic%20Bone%20Scaffolds%20for%20Growth%20Factor%20Delivery:%20Biological%20Characterization%20In%20Vitro%20and%20In%20Vivo&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Ahlfeld,%20Tilman&rft.date=2019-04&rft.volume=8&rft.issue=7&rft.spage=e1801512&rft.epage=n/a&rft.pages=e1801512-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201801512&rft_dat=%3Cproquest_cross%3E2206256089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206256089&rft_id=info:pmid/30838778&rfr_iscdi=true