Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection

Superconducting nanowire single-photon detectors with peak efficiencies above 90% and unrivalled timing jitter (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2019-05, Vol.14 (5), p.473-479
Hauptverfasser: Gibson, Sandra J., van Kasteren, Brad, Tekcan, Burak, Cui, Yingchao, van Dam, Dick, Haverkort, Jos E. M., Bakkers, Erik P. A. M., Reimer, Michael E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 5
container_start_page 473
container_title Nature nanotechnology
container_volume 14
creator Gibson, Sandra J.
van Kasteren, Brad
Tekcan, Burak
Cui, Yingchao
van Dam, Dick
Haverkort, Jos E. M.
Bakkers, Erik P. A. M.
Reimer, Michael E.
description Superconducting nanowire single-photon detectors with peak efficiencies above 90% and unrivalled timing jitter (
doi_str_mv 10.1038/s41565-019-0393-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2188208004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188208004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-68a0642a56a43b56559c17c2cfefedc48dae62e16255c9713ea9c74ef7f2c4fa3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotl4ewI0MuHETzW1mkqWIl0JBF-o2pJmTdkqbjMkU6dsbmaoguMqBfP9_kg-hM0quKOHyOglaViUmVGHCFcdsD41pLSTmXJX7P7OsR-gopSUhJVNMHKIRJ5LzSpExensxHURoiol_Lrzx4aONUJgYzTYVLsQCnGttC74vZjGYZmZ8Uyza-QKnDnIstX6-AtwtQh980UAPtm-DP0EHzqwSnO7OY_R6f_dy-4inTw-T25sptkLSHlfSkEowU1ZG8Fn-S6ksrS2zDhw0mWkMVAxoxcrSqppyMMrWAlztmBXO8GN0OfR2MbxvIPV63SYLq5XxEDZJMyolI5IQkdGLP-gybKLPr9OMMcqoylym6EDZGFKK4HQX27WJW02J_pKuB-k6S9df0jXLmfNd82a2huYn8W05A2wAUr7yc4i_q_9v_QRGjoyj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221219080</pqid></control><display><type>article</type><title>Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Gibson, Sandra J. ; van Kasteren, Brad ; Tekcan, Burak ; Cui, Yingchao ; van Dam, Dick ; Haverkort, Jos E. M. ; Bakkers, Erik P. A. M. ; Reimer, Michael E.</creator><creatorcontrib>Gibson, Sandra J. ; van Kasteren, Brad ; Tekcan, Burak ; Cui, Yingchao ; van Dam, Dick ; Haverkort, Jos E. M. ; Bakkers, Erik P. A. M. ; Reimer, Michael E.</creatorcontrib><description>Superconducting nanowire single-photon detectors with peak efficiencies above 90% and unrivalled timing jitter (&lt;30 ps) have emerged as a potent technology for quantum information and sensing applications. However, their high cost and cryogenic operation limit their widespread applicability. Here, we present an approach using tapered InP nanowire p–n junction arrays for high-efficiency, broadband and high-speed photodetection without the need for cryogenic cooling. The truncated conical nanowire shape enables a broadband, linear photoresponse in the ultraviolet to near-infrared range (~500 nm bandwidth) with external quantum efficiencies exceeding 85%. The devices exhibit a high gain beyond 10 5 , such that a single photon per pulse can be distinguished from the dark noise, while simultaneously showing a fast pulse rise time (&lt;1 ns) and excellent timing jitter (&lt;20 ps). Such detectors open up new possibilities for applications in remote sensing, dose monitoring for cancer treatment, three-dimensional imaging and quantum communication. Tapered InP nanowire p–n junction arrays enable efficient broadband and high-speed room-temperature photodetection.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-019-0393-2</identifier><identifier>PMID: 30833690</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/624/399/1016 ; 639/624/400/3925 ; Bandwidths ; Broadband ; Chemistry and Materials Science ; Cooling rate ; Cryogenic cooling ; Detectors ; High gain ; High speed ; Indium phosphides ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Nanowires ; P-n junctions ; Photoresponse ; Quantum phenomena ; Quantum theory ; Remote monitoring ; Remote sensing ; Timing jitter ; Vibration</subject><ispartof>Nature nanotechnology, 2019-05, Vol.14 (5), p.473-479</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-68a0642a56a43b56559c17c2cfefedc48dae62e16255c9713ea9c74ef7f2c4fa3</citedby><cites>FETCH-LOGICAL-c481t-68a0642a56a43b56559c17c2cfefedc48dae62e16255c9713ea9c74ef7f2c4fa3</cites><orcidid>0000-0002-8264-6862 ; 0000-0003-3051-673X ; 0000-0002-1338-1397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-019-0393-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-019-0393-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30833690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gibson, Sandra J.</creatorcontrib><creatorcontrib>van Kasteren, Brad</creatorcontrib><creatorcontrib>Tekcan, Burak</creatorcontrib><creatorcontrib>Cui, Yingchao</creatorcontrib><creatorcontrib>van Dam, Dick</creatorcontrib><creatorcontrib>Haverkort, Jos E. M.</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Reimer, Michael E.</creatorcontrib><title>Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Superconducting nanowire single-photon detectors with peak efficiencies above 90% and unrivalled timing jitter (&lt;30 ps) have emerged as a potent technology for quantum information and sensing applications. However, their high cost and cryogenic operation limit their widespread applicability. Here, we present an approach using tapered InP nanowire p–n junction arrays for high-efficiency, broadband and high-speed photodetection without the need for cryogenic cooling. The truncated conical nanowire shape enables a broadband, linear photoresponse in the ultraviolet to near-infrared range (~500 nm bandwidth) with external quantum efficiencies exceeding 85%. The devices exhibit a high gain beyond 10 5 , such that a single photon per pulse can be distinguished from the dark noise, while simultaneously showing a fast pulse rise time (&lt;1 ns) and excellent timing jitter (&lt;20 ps). Such detectors open up new possibilities for applications in remote sensing, dose monitoring for cancer treatment, three-dimensional imaging and quantum communication. Tapered InP nanowire p–n junction arrays enable efficient broadband and high-speed room-temperature photodetection.</description><subject>142/126</subject><subject>639/624/399/1016</subject><subject>639/624/400/3925</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Chemistry and Materials Science</subject><subject>Cooling rate</subject><subject>Cryogenic cooling</subject><subject>Detectors</subject><subject>High gain</subject><subject>High speed</subject><subject>Indium phosphides</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanowires</subject><subject>P-n junctions</subject><subject>Photoresponse</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Timing jitter</subject><subject>Vibration</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKAzEUhoMotl4ewI0MuHETzW1mkqWIl0JBF-o2pJmTdkqbjMkU6dsbmaoguMqBfP9_kg-hM0quKOHyOglaViUmVGHCFcdsD41pLSTmXJX7P7OsR-gopSUhJVNMHKIRJ5LzSpExensxHURoiol_Lrzx4aONUJgYzTYVLsQCnGttC74vZjGYZmZ8Uyza-QKnDnIstX6-AtwtQh980UAPtm-DP0EHzqwSnO7OY_R6f_dy-4inTw-T25sptkLSHlfSkEowU1ZG8Fn-S6ksrS2zDhw0mWkMVAxoxcrSqppyMMrWAlztmBXO8GN0OfR2MbxvIPV63SYLq5XxEDZJMyolI5IQkdGLP-gybKLPr9OMMcqoylym6EDZGFKK4HQX27WJW02J_pKuB-k6S9df0jXLmfNd82a2huYn8W05A2wAUr7yc4i_q_9v_QRGjoyj</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Gibson, Sandra J.</creator><creator>van Kasteren, Brad</creator><creator>Tekcan, Burak</creator><creator>Cui, Yingchao</creator><creator>van Dam, Dick</creator><creator>Haverkort, Jos E. M.</creator><creator>Bakkers, Erik P. A. M.</creator><creator>Reimer, Michael E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid><orcidid>https://orcid.org/0000-0003-3051-673X</orcidid><orcidid>https://orcid.org/0000-0002-1338-1397</orcidid></search><sort><creationdate>20190501</creationdate><title>Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection</title><author>Gibson, Sandra J. ; van Kasteren, Brad ; Tekcan, Burak ; Cui, Yingchao ; van Dam, Dick ; Haverkort, Jos E. M. ; Bakkers, Erik P. A. M. ; Reimer, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-68a0642a56a43b56559c17c2cfefedc48dae62e16255c9713ea9c74ef7f2c4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>142/126</topic><topic>639/624/399/1016</topic><topic>639/624/400/3925</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Chemistry and Materials Science</topic><topic>Cooling rate</topic><topic>Cryogenic cooling</topic><topic>Detectors</topic><topic>High gain</topic><topic>High speed</topic><topic>Indium phosphides</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanowires</topic><topic>P-n junctions</topic><topic>Photoresponse</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Timing jitter</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibson, Sandra J.</creatorcontrib><creatorcontrib>van Kasteren, Brad</creatorcontrib><creatorcontrib>Tekcan, Burak</creatorcontrib><creatorcontrib>Cui, Yingchao</creatorcontrib><creatorcontrib>van Dam, Dick</creatorcontrib><creatorcontrib>Haverkort, Jos E. M.</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Reimer, Michael E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibson, Sandra J.</au><au>van Kasteren, Brad</au><au>Tekcan, Burak</au><au>Cui, Yingchao</au><au>van Dam, Dick</au><au>Haverkort, Jos E. M.</au><au>Bakkers, Erik P. A. M.</au><au>Reimer, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><spage>473</spage><epage>479</epage><pages>473-479</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Superconducting nanowire single-photon detectors with peak efficiencies above 90% and unrivalled timing jitter (&lt;30 ps) have emerged as a potent technology for quantum information and sensing applications. However, their high cost and cryogenic operation limit their widespread applicability. Here, we present an approach using tapered InP nanowire p–n junction arrays for high-efficiency, broadband and high-speed photodetection without the need for cryogenic cooling. The truncated conical nanowire shape enables a broadband, linear photoresponse in the ultraviolet to near-infrared range (~500 nm bandwidth) with external quantum efficiencies exceeding 85%. The devices exhibit a high gain beyond 10 5 , such that a single photon per pulse can be distinguished from the dark noise, while simultaneously showing a fast pulse rise time (&lt;1 ns) and excellent timing jitter (&lt;20 ps). Such detectors open up new possibilities for applications in remote sensing, dose monitoring for cancer treatment, three-dimensional imaging and quantum communication. Tapered InP nanowire p–n junction arrays enable efficient broadband and high-speed room-temperature photodetection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30833690</pmid><doi>10.1038/s41565-019-0393-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid><orcidid>https://orcid.org/0000-0003-3051-673X</orcidid><orcidid>https://orcid.org/0000-0002-1338-1397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2019-05, Vol.14 (5), p.473-479
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2188208004
source SpringerLink Journals; Nature Journals Online
subjects 142/126
639/624/399/1016
639/624/400/3925
Bandwidths
Broadband
Chemistry and Materials Science
Cooling rate
Cryogenic cooling
Detectors
High gain
High speed
Indium phosphides
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Nanowires
P-n junctions
Photoresponse
Quantum phenomena
Quantum theory
Remote monitoring
Remote sensing
Timing jitter
Vibration
title Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tapered%20InP%20nanowire%20arrays%20for%20efficient%20broadband%20high-speed%20single-photon%20detection&rft.jtitle=Nature%20nanotechnology&rft.au=Gibson,%20Sandra%20J.&rft.date=2019-05-01&rft.volume=14&rft.issue=5&rft.spage=473&rft.epage=479&rft.pages=473-479&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-019-0393-2&rft_dat=%3Cproquest_cross%3E2188208004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221219080&rft_id=info:pmid/30833690&rfr_iscdi=true