Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations

In situ transmission electron microscope (TEM) characterization techniques provide valuable information on structure–property correlations to understand the behavior of materials at the nanoscale. However, understanding nanoscale structures and their interaction with the electron beam is pivotal for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy and microanalysis 2019-06, Vol.25 (3), p.592-600
Hauptverfasser: Neelisetty, Krishna Kanth, Mu, Xiaoke, Gutsch, Sebastian, Vahl, Alexander, Molinari, Alan, von Seggern, Falk, Hansen, Mirko, Scherer, Torsten, Zacharias, Margit, Kienle, Lorenz, Chakravadhanula, VS Kiran, Kübel, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 600
container_issue 3
container_start_page 592
container_title Microscopy and microanalysis
container_volume 25
creator Neelisetty, Krishna Kanth
Mu, Xiaoke
Gutsch, Sebastian
Vahl, Alexander
Molinari, Alan
von Seggern, Falk
Hansen, Mirko
Scherer, Torsten
Zacharias, Margit
Kienle, Lorenz
Chakravadhanula, VS Kiran
Kübel, Christian
description In situ transmission electron microscope (TEM) characterization techniques provide valuable information on structure–property correlations to understand the behavior of materials at the nanoscale. However, understanding nanoscale structures and their interaction with the electron beam is pivotal for the reliable interpretation of in situ/ex situ TEM studies. Here, we report that oxides commonly used in nanoelectronic applications, such as transistor gate oxides or memristive devices, are prone to electron beam induced damage that causes small structural changes even under very low dose conditions, eventually changing their electrical properties as examined via in situ measurements. In this work, silicon, titanium, and niobium oxide thin films are used for in situ TEM electrical characterization studies. The electron beam induced reduction of the oxides turns these insulators into conductors. The conductivity change is reversible by exposure to air, supporting the idea of electron beam reduction of oxides as primary damage mechanism. Through these measurements we propose a limit for the critical dose to be considered for in situ scanning electron microscopy and TEM characterization studies.
doi_str_mv 10.1017/S1431927619000175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187958205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1431927619000175</cupid><sourcerecordid>2187958205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-ab6945e02afc1da76f07716aefa64b6b1899ebb3d618295d3af00866f922d0fd3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMotlYfwI0E3LgZzU1mMpOlllaFQoXWjZshM0l0yvzUZAbszofwCX0SU1sVFFf3J985uRyEjoGcA4H4YgYhA0FjDoIQv4h2UN-voiABiHY_ewjW7z104NzCM4zEfB_1GEmoABH30cOo1HlrmxpfaVnhkTF-dNjP05dCaTx_Kmo8LsrKvb--zVrb5W1nNZa1whtlkcsS39lmqW27wsPGWl3Ktmhqd4j2jCydPtrWAbofj-bDm2Ayvb4dXk6CPExoG8iMizDShEqTg5IxNySOgUttJA8znkEihM4ypjj4oyPFpCEk4dwIShUxig3Q2cZ3aZvnTrs2rQqX67KUtW46l1JIYhEllEQePf2FLprO1v66lFIGjIZRmHgKNlRuG-esNunSFpW0qxRIug4-_RO815xsnbus0upb8ZW0B9jWVFaZLdSj_vn7f9sPmg-NVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231324548</pqid></control><display><type>article</type><title>Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations</title><source>Alma/SFX Local Collection</source><creator>Neelisetty, Krishna Kanth ; Mu, Xiaoke ; Gutsch, Sebastian ; Vahl, Alexander ; Molinari, Alan ; von Seggern, Falk ; Hansen, Mirko ; Scherer, Torsten ; Zacharias, Margit ; Kienle, Lorenz ; Chakravadhanula, VS Kiran ; Kübel, Christian</creator><creatorcontrib>Neelisetty, Krishna Kanth ; Mu, Xiaoke ; Gutsch, Sebastian ; Vahl, Alexander ; Molinari, Alan ; von Seggern, Falk ; Hansen, Mirko ; Scherer, Torsten ; Zacharias, Margit ; Kienle, Lorenz ; Chakravadhanula, VS Kiran ; Kübel, Christian</creatorcontrib><description>In situ transmission electron microscope (TEM) characterization techniques provide valuable information on structure–property correlations to understand the behavior of materials at the nanoscale. However, understanding nanoscale structures and their interaction with the electron beam is pivotal for the reliable interpretation of in situ/ex situ TEM studies. Here, we report that oxides commonly used in nanoelectronic applications, such as transistor gate oxides or memristive devices, are prone to electron beam induced damage that causes small structural changes even under very low dose conditions, eventually changing their electrical properties as examined via in situ measurements. In this work, silicon, titanium, and niobium oxide thin films are used for in situ TEM electrical characterization studies. The electron beam induced reduction of the oxides turns these insulators into conductors. The conductivity change is reversible by exposure to air, supporting the idea of electron beam reduction of oxides as primary damage mechanism. Through these measurements we propose a limit for the critical dose to be considered for in situ scanning electron microscopy and TEM characterization studies.</description><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S1431927619000175</identifier><identifier>PMID: 30829197</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Cameras ; Conductors ; Electrical properties ; Electrical resistivity ; Electron beams ; In situ measurement ; Insulators ; Materials Applications ; Memory devices ; Metal oxides ; Niobium ; Niobium oxides ; Oxides ; Reduction ; Scanning electron microscopy ; Silicon ; Structural damage ; Thin films ; Titanium ; Transmission electron microscopy</subject><ispartof>Microscopy and microanalysis, 2019-06, Vol.25 (3), p.592-600</ispartof><rights>Copyright © Microscopy Society of America 2019</rights><rights>2019 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-ab6945e02afc1da76f07716aefa64b6b1899ebb3d618295d3af00866f922d0fd3</citedby><cites>FETCH-LOGICAL-c482t-ab6945e02afc1da76f07716aefa64b6b1899ebb3d618295d3af00866f922d0fd3</cites><orcidid>0000-0001-5701-4006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30829197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neelisetty, Krishna Kanth</creatorcontrib><creatorcontrib>Mu, Xiaoke</creatorcontrib><creatorcontrib>Gutsch, Sebastian</creatorcontrib><creatorcontrib>Vahl, Alexander</creatorcontrib><creatorcontrib>Molinari, Alan</creatorcontrib><creatorcontrib>von Seggern, Falk</creatorcontrib><creatorcontrib>Hansen, Mirko</creatorcontrib><creatorcontrib>Scherer, Torsten</creatorcontrib><creatorcontrib>Zacharias, Margit</creatorcontrib><creatorcontrib>Kienle, Lorenz</creatorcontrib><creatorcontrib>Chakravadhanula, VS Kiran</creatorcontrib><creatorcontrib>Kübel, Christian</creatorcontrib><title>Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations</title><title>Microscopy and microanalysis</title><addtitle>Microsc Microanal</addtitle><description>In situ transmission electron microscope (TEM) characterization techniques provide valuable information on structure–property correlations to understand the behavior of materials at the nanoscale. However, understanding nanoscale structures and their interaction with the electron beam is pivotal for the reliable interpretation of in situ/ex situ TEM studies. Here, we report that oxides commonly used in nanoelectronic applications, such as transistor gate oxides or memristive devices, are prone to electron beam induced damage that causes small structural changes even under very low dose conditions, eventually changing their electrical properties as examined via in situ measurements. In this work, silicon, titanium, and niobium oxide thin films are used for in situ TEM electrical characterization studies. The electron beam induced reduction of the oxides turns these insulators into conductors. The conductivity change is reversible by exposure to air, supporting the idea of electron beam reduction of oxides as primary damage mechanism. Through these measurements we propose a limit for the critical dose to be considered for in situ scanning electron microscopy and TEM characterization studies.</description><subject>Cameras</subject><subject>Conductors</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electron beams</subject><subject>In situ measurement</subject><subject>Insulators</subject><subject>Materials Applications</subject><subject>Memory devices</subject><subject>Metal oxides</subject><subject>Niobium</subject><subject>Niobium oxides</subject><subject>Oxides</subject><subject>Reduction</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Structural damage</subject><subject>Thin films</subject><subject>Titanium</subject><subject>Transmission electron microscopy</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kM1KAzEUhYMotlYfwI0E3LgZzU1mMpOlllaFQoXWjZshM0l0yvzUZAbszofwCX0SU1sVFFf3J985uRyEjoGcA4H4YgYhA0FjDoIQv4h2UN-voiABiHY_ewjW7z104NzCM4zEfB_1GEmoABH30cOo1HlrmxpfaVnhkTF-dNjP05dCaTx_Kmo8LsrKvb--zVrb5W1nNZa1whtlkcsS39lmqW27wsPGWl3Ktmhqd4j2jCydPtrWAbofj-bDm2Ayvb4dXk6CPExoG8iMizDShEqTg5IxNySOgUttJA8znkEihM4ypjj4oyPFpCEk4dwIShUxig3Q2cZ3aZvnTrs2rQqX67KUtW46l1JIYhEllEQePf2FLprO1v66lFIGjIZRmHgKNlRuG-esNunSFpW0qxRIug4-_RO815xsnbus0upb8ZW0B9jWVFaZLdSj_vn7f9sPmg-NVg</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Neelisetty, Krishna Kanth</creator><creator>Mu, Xiaoke</creator><creator>Gutsch, Sebastian</creator><creator>Vahl, Alexander</creator><creator>Molinari, Alan</creator><creator>von Seggern, Falk</creator><creator>Hansen, Mirko</creator><creator>Scherer, Torsten</creator><creator>Zacharias, Margit</creator><creator>Kienle, Lorenz</creator><creator>Chakravadhanula, VS Kiran</creator><creator>Kübel, Christian</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>IKXGN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5701-4006</orcidid></search><sort><creationdate>20190601</creationdate><title>Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations</title><author>Neelisetty, Krishna Kanth ; Mu, Xiaoke ; Gutsch, Sebastian ; Vahl, Alexander ; Molinari, Alan ; von Seggern, Falk ; Hansen, Mirko ; Scherer, Torsten ; Zacharias, Margit ; Kienle, Lorenz ; Chakravadhanula, VS Kiran ; Kübel, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-ab6945e02afc1da76f07716aefa64b6b1899ebb3d618295d3af00866f922d0fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cameras</topic><topic>Conductors</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electron beams</topic><topic>In situ measurement</topic><topic>Insulators</topic><topic>Materials Applications</topic><topic>Memory devices</topic><topic>Metal oxides</topic><topic>Niobium</topic><topic>Niobium oxides</topic><topic>Oxides</topic><topic>Reduction</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Structural damage</topic><topic>Thin films</topic><topic>Titanium</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neelisetty, Krishna Kanth</creatorcontrib><creatorcontrib>Mu, Xiaoke</creatorcontrib><creatorcontrib>Gutsch, Sebastian</creatorcontrib><creatorcontrib>Vahl, Alexander</creatorcontrib><creatorcontrib>Molinari, Alan</creatorcontrib><creatorcontrib>von Seggern, Falk</creatorcontrib><creatorcontrib>Hansen, Mirko</creatorcontrib><creatorcontrib>Scherer, Torsten</creatorcontrib><creatorcontrib>Zacharias, Margit</creatorcontrib><creatorcontrib>Kienle, Lorenz</creatorcontrib><creatorcontrib>Chakravadhanula, VS Kiran</creatorcontrib><creatorcontrib>Kübel, Christian</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy and microanalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neelisetty, Krishna Kanth</au><au>Mu, Xiaoke</au><au>Gutsch, Sebastian</au><au>Vahl, Alexander</au><au>Molinari, Alan</au><au>von Seggern, Falk</au><au>Hansen, Mirko</au><au>Scherer, Torsten</au><au>Zacharias, Margit</au><au>Kienle, Lorenz</au><au>Chakravadhanula, VS Kiran</au><au>Kübel, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations</atitle><jtitle>Microscopy and microanalysis</jtitle><addtitle>Microsc Microanal</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>25</volume><issue>3</issue><spage>592</spage><epage>600</epage><pages>592-600</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><abstract>In situ transmission electron microscope (TEM) characterization techniques provide valuable information on structure–property correlations to understand the behavior of materials at the nanoscale. However, understanding nanoscale structures and their interaction with the electron beam is pivotal for the reliable interpretation of in situ/ex situ TEM studies. Here, we report that oxides commonly used in nanoelectronic applications, such as transistor gate oxides or memristive devices, are prone to electron beam induced damage that causes small structural changes even under very low dose conditions, eventually changing their electrical properties as examined via in situ measurements. In this work, silicon, titanium, and niobium oxide thin films are used for in situ TEM electrical characterization studies. The electron beam induced reduction of the oxides turns these insulators into conductors. The conductivity change is reversible by exposure to air, supporting the idea of electron beam reduction of oxides as primary damage mechanism. Through these measurements we propose a limit for the critical dose to be considered for in situ scanning electron microscopy and TEM characterization studies.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>30829197</pmid><doi>10.1017/S1431927619000175</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5701-4006</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1431-9276
ispartof Microscopy and microanalysis, 2019-06, Vol.25 (3), p.592-600
issn 1431-9276
1435-8115
language eng
recordid cdi_proquest_miscellaneous_2187958205
source Alma/SFX Local Collection
subjects Cameras
Conductors
Electrical properties
Electrical resistivity
Electron beams
In situ measurement
Insulators
Materials Applications
Memory devices
Metal oxides
Niobium
Niobium oxides
Oxides
Reduction
Scanning electron microscopy
Silicon
Structural damage
Thin films
Titanium
Transmission electron microscopy
title Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Beam%20Effects%20on%20Oxide%20Thin%20Films%E2%80%94Structure%20and%20Electrical%20Property%20Correlations&rft.jtitle=Microscopy%20and%20microanalysis&rft.au=Neelisetty,%20Krishna%20Kanth&rft.date=2019-06-01&rft.volume=25&rft.issue=3&rft.spage=592&rft.epage=600&rft.pages=592-600&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S1431927619000175&rft_dat=%3Cproquest_cross%3E2187958205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231324548&rft_id=info:pmid/30829197&rft_cupid=10_1017_S1431927619000175&rfr_iscdi=true