Meiotic behavior of a complex hexavalent in heterozygous mice for Robertsonian translocations: insights for synapsis dynamics

Natural populations of the house mouse Mus musculus domesticus show great diversity in chromosomal number due to the presence of chromosomal rearrangements, mainly Robertsonian translocations. Breeding between two populations with different chromosomal configurations generates subfertile or sterile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chromosoma 2019-06, Vol.128 (2), p.149-163
Hauptverfasser: Ribagorda, Marta, Berríos, Soledad, Solano, Emanuela, Ayarza, Eliana, Martín-Ruiz, Marta, Gil-Fernández, Ana, Parra, María Teresa, Viera, Alberto, Rufas, Julio S., Capanna, Ernesto, Castiglia, Riccardo, Fernández-Donoso, Raúl, Page, Jesús
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 2
container_start_page 149
container_title Chromosoma
container_volume 128
creator Ribagorda, Marta
Berríos, Soledad
Solano, Emanuela
Ayarza, Eliana
Martín-Ruiz, Marta
Gil-Fernández, Ana
Parra, María Teresa
Viera, Alberto
Rufas, Julio S.
Capanna, Ernesto
Castiglia, Riccardo
Fernández-Donoso, Raúl
Page, Jesús
description Natural populations of the house mouse Mus musculus domesticus show great diversity in chromosomal number due to the presence of chromosomal rearrangements, mainly Robertsonian translocations. Breeding between two populations with different chromosomal configurations generates subfertile or sterile hybrid individuals due to impaired meiotic development. In this study, we have analyzed prophase-I spermatocytes of hybrids formed by crossing mice from Vulcano and Lipari island populations. Both populations have a 2n = 26 karyotype but different combinations of Robertsonian translocations. We studied the progress of synapsis, recombination, and meiotic silencing of unsynapsed chromosomes during prophase-I through the immunolocalization of the proteins SYCP3, SYCP1, γH2AX, RAD51, and MLH1. In these hybrids, a hexavalent is formed that, depending on the degree of synapsis between chromosomes, can adopt an open chain, a ring, or a closed configuration. The frequency of these configurations varies throughout meiosis, with the maximum degree of synapsis occurring at mid pachytene. In addition, we observed the appearance of heterologous synapsis between telocentric and metacentric chromosomes; however, this synapsis seems to be transient and unstable and unsynapsed regions are frequently observed in mid-late pachytene. Interestingly, we found that chiasmata are frequently located at the boundaries of unsynapsed chromosomal regions in the hexavalent during late pachytene. These results provide new clues about synapsis dynamics during meiosis. We propose that mechanical forces generated along chromosomes may induce premature desynapsis, which, in turn, might be counteracted by the location of chiasmata. Despite these and additional meiotic features, such as the accumulation of γH2AX on unsynapsed chromosome regions, we observed a large number of cells that progressed to late stages of prophase-I, indicating that synapsis defects may not trigger a meiotic crisis in these hybrids.
doi_str_mv 10.1007/s00412-019-00695-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187954591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187954591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f55a85845930ef933bf52358b76339ac3409f3ccaf2ea8c75363653606927e1c3</originalsourceid><addsrcrecordid>eNp9kU1vVCEUhonR2HH0D7gwJG7cXOVjuBfcmcavpE2TRteESw8zNPfCyGGajon_XTpTNenCDXDged8DvIS85OwtZ2x4h4ytuOgYNx1jvVGdfkQWfCXbltb9Y7JgjJlOGa5OyDPE67tS9OwpOZFMi14PfEF-nUPMNXo6wsbdxFxoDtRRn-ftBLd0A7fuxk2QKo2pVRVK_rlf5x3SOXqgoQku8wilYk7RJVqLSzhl72rMCd83Fcb1puKBxH1yW4xIr9qi6fE5eRLchPDifl6S758-fjv90p1dfP56-uGs83JQtQtKOa30ShnJIBgpx6CEVHoceimN83LFTJDeuyDAaT8o2cu-De1TxADcyyV5c_TdlvxjB1jtHNHDNLkE7S1WcD0Y1fx5Q18_QK_zrqR2uwMl1KBa7yURR8qXjFgg2G2Jsyt7y5m9C8cew7EtHHsIx-omenVvvRtnuPor-ZNGA-QRwHaU1lD-9f6P7W-qkpuB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187257552</pqid></control><display><type>article</type><title>Meiotic behavior of a complex hexavalent in heterozygous mice for Robertsonian translocations: insights for synapsis dynamics</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Ribagorda, Marta ; Berríos, Soledad ; Solano, Emanuela ; Ayarza, Eliana ; Martín-Ruiz, Marta ; Gil-Fernández, Ana ; Parra, María Teresa ; Viera, Alberto ; Rufas, Julio S. ; Capanna, Ernesto ; Castiglia, Riccardo ; Fernández-Donoso, Raúl ; Page, Jesús</creator><creatorcontrib>Ribagorda, Marta ; Berríos, Soledad ; Solano, Emanuela ; Ayarza, Eliana ; Martín-Ruiz, Marta ; Gil-Fernández, Ana ; Parra, María Teresa ; Viera, Alberto ; Rufas, Julio S. ; Capanna, Ernesto ; Castiglia, Riccardo ; Fernández-Donoso, Raúl ; Page, Jesús</creatorcontrib><description>Natural populations of the house mouse Mus musculus domesticus show great diversity in chromosomal number due to the presence of chromosomal rearrangements, mainly Robertsonian translocations. Breeding between two populations with different chromosomal configurations generates subfertile or sterile hybrid individuals due to impaired meiotic development. In this study, we have analyzed prophase-I spermatocytes of hybrids formed by crossing mice from Vulcano and Lipari island populations. Both populations have a 2n = 26 karyotype but different combinations of Robertsonian translocations. We studied the progress of synapsis, recombination, and meiotic silencing of unsynapsed chromosomes during prophase-I through the immunolocalization of the proteins SYCP3, SYCP1, γH2AX, RAD51, and MLH1. In these hybrids, a hexavalent is formed that, depending on the degree of synapsis between chromosomes, can adopt an open chain, a ring, or a closed configuration. The frequency of these configurations varies throughout meiosis, with the maximum degree of synapsis occurring at mid pachytene. In addition, we observed the appearance of heterologous synapsis between telocentric and metacentric chromosomes; however, this synapsis seems to be transient and unstable and unsynapsed regions are frequently observed in mid-late pachytene. Interestingly, we found that chiasmata are frequently located at the boundaries of unsynapsed chromosomal regions in the hexavalent during late pachytene. These results provide new clues about synapsis dynamics during meiosis. We propose that mechanical forces generated along chromosomes may induce premature desynapsis, which, in turn, might be counteracted by the location of chiasmata. Despite these and additional meiotic features, such as the accumulation of γH2AX on unsynapsed chromosome regions, we observed a large number of cells that progressed to late stages of prophase-I, indicating that synapsis defects may not trigger a meiotic crisis in these hybrids.</description><identifier>ISSN: 0009-5915</identifier><identifier>EISSN: 1432-0886</identifier><identifier>DOI: 10.1007/s00412-019-00695-8</identifier><identifier>PMID: 30826871</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Genetics and Genomics ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Chromosome Pairing ; Chromosome rearrangements ; Chromosome translocations ; Chromosomes ; Developmental Biology ; Eukaryotic Microbiology ; Female ; Heterozygote ; Human Genetics ; Hybrids ; Karyotype ; Life Sciences ; Male ; Meiosis ; Meiotic Prophase I ; Mice - genetics ; MLH1 protein ; Original Article ; Pachytene ; Prophase ; Recombination ; Spermatocytes ; Spermatocytes - cytology ; Translocation, Genetic</subject><ispartof>Chromosoma, 2019-06, Vol.128 (2), p.149-163</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Chromosoma is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f55a85845930ef933bf52358b76339ac3409f3ccaf2ea8c75363653606927e1c3</citedby><cites>FETCH-LOGICAL-c375t-f55a85845930ef933bf52358b76339ac3409f3ccaf2ea8c75363653606927e1c3</cites><orcidid>0000-0001-8381-324X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00412-019-00695-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00412-019-00695-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30826871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ribagorda, Marta</creatorcontrib><creatorcontrib>Berríos, Soledad</creatorcontrib><creatorcontrib>Solano, Emanuela</creatorcontrib><creatorcontrib>Ayarza, Eliana</creatorcontrib><creatorcontrib>Martín-Ruiz, Marta</creatorcontrib><creatorcontrib>Gil-Fernández, Ana</creatorcontrib><creatorcontrib>Parra, María Teresa</creatorcontrib><creatorcontrib>Viera, Alberto</creatorcontrib><creatorcontrib>Rufas, Julio S.</creatorcontrib><creatorcontrib>Capanna, Ernesto</creatorcontrib><creatorcontrib>Castiglia, Riccardo</creatorcontrib><creatorcontrib>Fernández-Donoso, Raúl</creatorcontrib><creatorcontrib>Page, Jesús</creatorcontrib><title>Meiotic behavior of a complex hexavalent in heterozygous mice for Robertsonian translocations: insights for synapsis dynamics</title><title>Chromosoma</title><addtitle>Chromosoma</addtitle><addtitle>Chromosoma</addtitle><description>Natural populations of the house mouse Mus musculus domesticus show great diversity in chromosomal number due to the presence of chromosomal rearrangements, mainly Robertsonian translocations. Breeding between two populations with different chromosomal configurations generates subfertile or sterile hybrid individuals due to impaired meiotic development. In this study, we have analyzed prophase-I spermatocytes of hybrids formed by crossing mice from Vulcano and Lipari island populations. Both populations have a 2n = 26 karyotype but different combinations of Robertsonian translocations. We studied the progress of synapsis, recombination, and meiotic silencing of unsynapsed chromosomes during prophase-I through the immunolocalization of the proteins SYCP3, SYCP1, γH2AX, RAD51, and MLH1. In these hybrids, a hexavalent is formed that, depending on the degree of synapsis between chromosomes, can adopt an open chain, a ring, or a closed configuration. The frequency of these configurations varies throughout meiosis, with the maximum degree of synapsis occurring at mid pachytene. In addition, we observed the appearance of heterologous synapsis between telocentric and metacentric chromosomes; however, this synapsis seems to be transient and unstable and unsynapsed regions are frequently observed in mid-late pachytene. Interestingly, we found that chiasmata are frequently located at the boundaries of unsynapsed chromosomal regions in the hexavalent during late pachytene. These results provide new clues about synapsis dynamics during meiosis. We propose that mechanical forces generated along chromosomes may induce premature desynapsis, which, in turn, might be counteracted by the location of chiasmata. Despite these and additional meiotic features, such as the accumulation of γH2AX on unsynapsed chromosome regions, we observed a large number of cells that progressed to late stages of prophase-I, indicating that synapsis defects may not trigger a meiotic crisis in these hybrids.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Chromosome Pairing</subject><subject>Chromosome rearrangements</subject><subject>Chromosome translocations</subject><subject>Chromosomes</subject><subject>Developmental Biology</subject><subject>Eukaryotic Microbiology</subject><subject>Female</subject><subject>Heterozygote</subject><subject>Human Genetics</subject><subject>Hybrids</subject><subject>Karyotype</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Meiosis</subject><subject>Meiotic Prophase I</subject><subject>Mice - genetics</subject><subject>MLH1 protein</subject><subject>Original Article</subject><subject>Pachytene</subject><subject>Prophase</subject><subject>Recombination</subject><subject>Spermatocytes</subject><subject>Spermatocytes - cytology</subject><subject>Translocation, Genetic</subject><issn>0009-5915</issn><issn>1432-0886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1vVCEUhonR2HH0D7gwJG7cXOVjuBfcmcavpE2TRteESw8zNPfCyGGajon_XTpTNenCDXDged8DvIS85OwtZ2x4h4ytuOgYNx1jvVGdfkQWfCXbltb9Y7JgjJlOGa5OyDPE67tS9OwpOZFMi14PfEF-nUPMNXo6wsbdxFxoDtRRn-ftBLd0A7fuxk2QKo2pVRVK_rlf5x3SOXqgoQku8wilYk7RJVqLSzhl72rMCd83Fcb1puKBxH1yW4xIr9qi6fE5eRLchPDifl6S758-fjv90p1dfP56-uGs83JQtQtKOa30ShnJIBgpx6CEVHoceimN83LFTJDeuyDAaT8o2cu-De1TxADcyyV5c_TdlvxjB1jtHNHDNLkE7S1WcD0Y1fx5Q18_QK_zrqR2uwMl1KBa7yURR8qXjFgg2G2Jsyt7y5m9C8cew7EtHHsIx-omenVvvRtnuPor-ZNGA-QRwHaU1lD-9f6P7W-qkpuB</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ribagorda, Marta</creator><creator>Berríos, Soledad</creator><creator>Solano, Emanuela</creator><creator>Ayarza, Eliana</creator><creator>Martín-Ruiz, Marta</creator><creator>Gil-Fernández, Ana</creator><creator>Parra, María Teresa</creator><creator>Viera, Alberto</creator><creator>Rufas, Julio S.</creator><creator>Capanna, Ernesto</creator><creator>Castiglia, Riccardo</creator><creator>Fernández-Donoso, Raúl</creator><creator>Page, Jesús</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8381-324X</orcidid></search><sort><creationdate>20190601</creationdate><title>Meiotic behavior of a complex hexavalent in heterozygous mice for Robertsonian translocations: insights for synapsis dynamics</title><author>Ribagorda, Marta ; Berríos, Soledad ; Solano, Emanuela ; Ayarza, Eliana ; Martín-Ruiz, Marta ; Gil-Fernández, Ana ; Parra, María Teresa ; Viera, Alberto ; Rufas, Julio S. ; Capanna, Ernesto ; Castiglia, Riccardo ; Fernández-Donoso, Raúl ; Page, Jesús</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f55a85845930ef933bf52358b76339ac3409f3ccaf2ea8c75363653606927e1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Chromosome Pairing</topic><topic>Chromosome rearrangements</topic><topic>Chromosome translocations</topic><topic>Chromosomes</topic><topic>Developmental Biology</topic><topic>Eukaryotic Microbiology</topic><topic>Female</topic><topic>Heterozygote</topic><topic>Human Genetics</topic><topic>Hybrids</topic><topic>Karyotype</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Meiosis</topic><topic>Meiotic Prophase I</topic><topic>Mice - genetics</topic><topic>MLH1 protein</topic><topic>Original Article</topic><topic>Pachytene</topic><topic>Prophase</topic><topic>Recombination</topic><topic>Spermatocytes</topic><topic>Spermatocytes - cytology</topic><topic>Translocation, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribagorda, Marta</creatorcontrib><creatorcontrib>Berríos, Soledad</creatorcontrib><creatorcontrib>Solano, Emanuela</creatorcontrib><creatorcontrib>Ayarza, Eliana</creatorcontrib><creatorcontrib>Martín-Ruiz, Marta</creatorcontrib><creatorcontrib>Gil-Fernández, Ana</creatorcontrib><creatorcontrib>Parra, María Teresa</creatorcontrib><creatorcontrib>Viera, Alberto</creatorcontrib><creatorcontrib>Rufas, Julio S.</creatorcontrib><creatorcontrib>Capanna, Ernesto</creatorcontrib><creatorcontrib>Castiglia, Riccardo</creatorcontrib><creatorcontrib>Fernández-Donoso, Raúl</creatorcontrib><creatorcontrib>Page, Jesús</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chromosoma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribagorda, Marta</au><au>Berríos, Soledad</au><au>Solano, Emanuela</au><au>Ayarza, Eliana</au><au>Martín-Ruiz, Marta</au><au>Gil-Fernández, Ana</au><au>Parra, María Teresa</au><au>Viera, Alberto</au><au>Rufas, Julio S.</au><au>Capanna, Ernesto</au><au>Castiglia, Riccardo</au><au>Fernández-Donoso, Raúl</au><au>Page, Jesús</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meiotic behavior of a complex hexavalent in heterozygous mice for Robertsonian translocations: insights for synapsis dynamics</atitle><jtitle>Chromosoma</jtitle><stitle>Chromosoma</stitle><addtitle>Chromosoma</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>128</volume><issue>2</issue><spage>149</spage><epage>163</epage><pages>149-163</pages><issn>0009-5915</issn><eissn>1432-0886</eissn><abstract>Natural populations of the house mouse Mus musculus domesticus show great diversity in chromosomal number due to the presence of chromosomal rearrangements, mainly Robertsonian translocations. Breeding between two populations with different chromosomal configurations generates subfertile or sterile hybrid individuals due to impaired meiotic development. In this study, we have analyzed prophase-I spermatocytes of hybrids formed by crossing mice from Vulcano and Lipari island populations. Both populations have a 2n = 26 karyotype but different combinations of Robertsonian translocations. We studied the progress of synapsis, recombination, and meiotic silencing of unsynapsed chromosomes during prophase-I through the immunolocalization of the proteins SYCP3, SYCP1, γH2AX, RAD51, and MLH1. In these hybrids, a hexavalent is formed that, depending on the degree of synapsis between chromosomes, can adopt an open chain, a ring, or a closed configuration. The frequency of these configurations varies throughout meiosis, with the maximum degree of synapsis occurring at mid pachytene. In addition, we observed the appearance of heterologous synapsis between telocentric and metacentric chromosomes; however, this synapsis seems to be transient and unstable and unsynapsed regions are frequently observed in mid-late pachytene. Interestingly, we found that chiasmata are frequently located at the boundaries of unsynapsed chromosomal regions in the hexavalent during late pachytene. These results provide new clues about synapsis dynamics during meiosis. We propose that mechanical forces generated along chromosomes may induce premature desynapsis, which, in turn, might be counteracted by the location of chiasmata. Despite these and additional meiotic features, such as the accumulation of γH2AX on unsynapsed chromosome regions, we observed a large number of cells that progressed to late stages of prophase-I, indicating that synapsis defects may not trigger a meiotic crisis in these hybrids.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30826871</pmid><doi>10.1007/s00412-019-00695-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8381-324X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-5915
ispartof Chromosoma, 2019-06, Vol.128 (2), p.149-163
issn 0009-5915
1432-0886
language eng
recordid cdi_proquest_miscellaneous_2187954591
source MEDLINE; SpringerNature Journals
subjects Animal Genetics and Genomics
Animals
Biochemistry
Biomedical and Life Sciences
Cell Biology
Chromosome Pairing
Chromosome rearrangements
Chromosome translocations
Chromosomes
Developmental Biology
Eukaryotic Microbiology
Female
Heterozygote
Human Genetics
Hybrids
Karyotype
Life Sciences
Male
Meiosis
Meiotic Prophase I
Mice - genetics
MLH1 protein
Original Article
Pachytene
Prophase
Recombination
Spermatocytes
Spermatocytes - cytology
Translocation, Genetic
title Meiotic behavior of a complex hexavalent in heterozygous mice for Robertsonian translocations: insights for synapsis dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meiotic%20behavior%20of%20a%20complex%20hexavalent%20in%20heterozygous%20mice%20for%20Robertsonian%20translocations:%20insights%20for%20synapsis%20dynamics&rft.jtitle=Chromosoma&rft.au=Ribagorda,%20Marta&rft.date=2019-06-01&rft.volume=128&rft.issue=2&rft.spage=149&rft.epage=163&rft.pages=149-163&rft.issn=0009-5915&rft.eissn=1432-0886&rft_id=info:doi/10.1007/s00412-019-00695-8&rft_dat=%3Cproquest_cross%3E2187954591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187257552&rft_id=info:pmid/30826871&rfr_iscdi=true