Nondegenerate Solitons in Manakov System
It is known that the Manakov equation which describes wave propagation in two mode optical fibers, photorefractive materials, etc., can admit solitons which allow energy redistribution between the modes on collision that also leads to logical computing. In this Letter, we point out that the Manakov...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-02, Vol.122 (4), p.043901-043901, Article 043901 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 043901 |
---|---|
container_issue | 4 |
container_start_page | 043901 |
container_title | Physical review letters |
container_volume | 122 |
creator | Stalin, S Ramakrishnan, R Senthilvelan, M Lakshmanan, M |
description | It is known that the Manakov equation which describes wave propagation in two mode optical fibers, photorefractive materials, etc., can admit solitons which allow energy redistribution between the modes on collision that also leads to logical computing. In this Letter, we point out that the Manakov system can admit a more general type of nondegenerate fundamental solitons corresponding to different wave numbers, which undergo collisions without any energy redistribution. The previously known class of solitons which allows energy redistribution among the modes turns out to be a special case corresponding to solitary waves with identical wave numbers in both the modes and traveling with the same velocity. We trace out the reason behind such a possibility and analyze the physical consequences. |
doi_str_mv | 10.1103/PhysRevLett.122.043901 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187535357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187535357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-ba74687879e6ddd5330b30e1a654c221d06352c742f9b15f232a3b3c6173367b3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AURQdRbK3-hRJw003qe_OSmWQpxapQP7C6HibJRFOTTM0khf57U1pF5C3u5tzL4zA2RpgiAl09f2zdi9ksTNtOkfMpBBQDHrEhgox9iRgcsyEAoR8DyAE7c24FAMhFdMoGBFJEPIYhmzzaOjPvpjaNbo23tGXR2tp5Re096Fp_2o233LrWVOfsJNelMxeHHLG3-c3r7M5fPN3ez64XfkoUt36iZSAiGcnYiCzLQiJICAxqEQYp55iBoJCnMuB5nGCYc-KaEkoFSiIhExqxyX533divzrhWVYVLTVnq2tjOKY6RDKk_2aOX_9CV7Zq6_25HQdSDPOgpsafSxjrXmFytm6LSzVYhqJ1L9cel6l2qvcu-OD7Md0llst_ajzz6Bk7Eb78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2180887524</pqid></control><display><type>article</type><title>Nondegenerate Solitons in Manakov System</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Stalin, S ; Ramakrishnan, R ; Senthilvelan, M ; Lakshmanan, M</creator><creatorcontrib>Stalin, S ; Ramakrishnan, R ; Senthilvelan, M ; Lakshmanan, M</creatorcontrib><description>It is known that the Manakov equation which describes wave propagation in two mode optical fibers, photorefractive materials, etc., can admit solitons which allow energy redistribution between the modes on collision that also leads to logical computing. In this Letter, we point out that the Manakov system can admit a more general type of nondegenerate fundamental solitons corresponding to different wave numbers, which undergo collisions without any energy redistribution. The previously known class of solitons which allows energy redistribution among the modes turns out to be a special case corresponding to solitary waves with identical wave numbers in both the modes and traveling with the same velocity. We trace out the reason behind such a possibility and analyze the physical consequences.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.122.043901</identifier><identifier>PMID: 30768290</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Collision dynamics ; Optical fibers ; Photorefractivity ; Propagation modes ; Solitary waves ; Wave propagation ; Wavelengths</subject><ispartof>Physical review letters, 2019-02, Vol.122 (4), p.043901-043901, Article 043901</ispartof><rights>Copyright American Physical Society Feb 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-ba74687879e6ddd5330b30e1a654c221d06352c742f9b15f232a3b3c6173367b3</citedby><cites>FETCH-LOGICAL-c339t-ba74687879e6ddd5330b30e1a654c221d06352c742f9b15f232a3b3c6173367b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30768290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stalin, S</creatorcontrib><creatorcontrib>Ramakrishnan, R</creatorcontrib><creatorcontrib>Senthilvelan, M</creatorcontrib><creatorcontrib>Lakshmanan, M</creatorcontrib><title>Nondegenerate Solitons in Manakov System</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>It is known that the Manakov equation which describes wave propagation in two mode optical fibers, photorefractive materials, etc., can admit solitons which allow energy redistribution between the modes on collision that also leads to logical computing. In this Letter, we point out that the Manakov system can admit a more general type of nondegenerate fundamental solitons corresponding to different wave numbers, which undergo collisions without any energy redistribution. The previously known class of solitons which allows energy redistribution among the modes turns out to be a special case corresponding to solitary waves with identical wave numbers in both the modes and traveling with the same velocity. We trace out the reason behind such a possibility and analyze the physical consequences.</description><subject>Collision dynamics</subject><subject>Optical fibers</subject><subject>Photorefractivity</subject><subject>Propagation modes</subject><subject>Solitary waves</subject><subject>Wave propagation</subject><subject>Wavelengths</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AURQdRbK3-hRJw003qe_OSmWQpxapQP7C6HibJRFOTTM0khf57U1pF5C3u5tzL4zA2RpgiAl09f2zdi9ksTNtOkfMpBBQDHrEhgox9iRgcsyEAoR8DyAE7c24FAMhFdMoGBFJEPIYhmzzaOjPvpjaNbo23tGXR2tp5Re096Fp_2o233LrWVOfsJNelMxeHHLG3-c3r7M5fPN3ez64XfkoUt36iZSAiGcnYiCzLQiJICAxqEQYp55iBoJCnMuB5nGCYc-KaEkoFSiIhExqxyX533divzrhWVYVLTVnq2tjOKY6RDKk_2aOX_9CV7Zq6_25HQdSDPOgpsafSxjrXmFytm6LSzVYhqJ1L9cel6l2qvcu-OD7Md0llst_ajzz6Bk7Eb78</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Stalin, S</creator><creator>Ramakrishnan, R</creator><creator>Senthilvelan, M</creator><creator>Lakshmanan, M</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20190201</creationdate><title>Nondegenerate Solitons in Manakov System</title><author>Stalin, S ; Ramakrishnan, R ; Senthilvelan, M ; Lakshmanan, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-ba74687879e6ddd5330b30e1a654c221d06352c742f9b15f232a3b3c6173367b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Collision dynamics</topic><topic>Optical fibers</topic><topic>Photorefractivity</topic><topic>Propagation modes</topic><topic>Solitary waves</topic><topic>Wave propagation</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stalin, S</creatorcontrib><creatorcontrib>Ramakrishnan, R</creatorcontrib><creatorcontrib>Senthilvelan, M</creatorcontrib><creatorcontrib>Lakshmanan, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stalin, S</au><au>Ramakrishnan, R</au><au>Senthilvelan, M</au><au>Lakshmanan, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondegenerate Solitons in Manakov System</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>122</volume><issue>4</issue><spage>043901</spage><epage>043901</epage><pages>043901-043901</pages><artnum>043901</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>It is known that the Manakov equation which describes wave propagation in two mode optical fibers, photorefractive materials, etc., can admit solitons which allow energy redistribution between the modes on collision that also leads to logical computing. In this Letter, we point out that the Manakov system can admit a more general type of nondegenerate fundamental solitons corresponding to different wave numbers, which undergo collisions without any energy redistribution. The previously known class of solitons which allows energy redistribution among the modes turns out to be a special case corresponding to solitary waves with identical wave numbers in both the modes and traveling with the same velocity. We trace out the reason behind such a possibility and analyze the physical consequences.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30768290</pmid><doi>10.1103/PhysRevLett.122.043901</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-02, Vol.122 (4), p.043901-043901, Article 043901 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2187535357 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Collision dynamics Optical fibers Photorefractivity Propagation modes Solitary waves Wave propagation Wavelengths |
title | Nondegenerate Solitons in Manakov System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondegenerate%20Solitons%20in%20Manakov%20System&rft.jtitle=Physical%20review%20letters&rft.au=Stalin,%20S&rft.date=2019-02-01&rft.volume=122&rft.issue=4&rft.spage=043901&rft.epage=043901&rft.pages=043901-043901&rft.artnum=043901&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.122.043901&rft_dat=%3Cproquest_cross%3E2187535357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2180887524&rft_id=info:pmid/30768290&rfr_iscdi=true |