Portable NIR Spectrometer for Prediction of Palm Oil Acidity
Palm oil is widely used in the food industry, and its quality is associated with the free fatty acids (FFA) content. Determination of FFA in oil is time‐consuming, requires chemicals and generates residues. There is a trend of applying process analytical technologies (PAT) for fast and nondestructiv...
Gespeichert in:
Veröffentlicht in: | Journal of food science 2019-03, Vol.84 (3), p.406-411 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | 3 |
container_start_page | 406 |
container_title | Journal of food science |
container_volume | 84 |
creator | Kaufmann, Karine Cristine Favero, Flávia de Faveri Vasconcelos, Marcus Arthur Marçal Godoy, Helena Teixeira Sampaio, Klicia Araujo Barbin, Douglas Fernandes |
description | Palm oil is widely used in the food industry, and its quality is associated with the free fatty acids (FFA) content. Determination of FFA in oil is time‐consuming, requires chemicals and generates residues. There is a trend of applying process analytical technologies (PAT) for fast and nondestructive determination of oil parameters. Portable near‐infrared (NIR) spectrometers are cheaper than bench top equipment, and have been used for several tasks in the food processing industry, as it provides fast and reliable data for inline measurements. This study investigated the use of NIR spectra using a portable equipment, combined with both unsupervised and supervised multivariate analyses for identification of palm oil samples with different levels of FFA. Soft independent modeling of class analogy , k‐Nearest Neighbors, and linear discriminant analysis models were able to correctly identify 100% of the studied samples with selected wavelengths from NIR spectra. Calibration models were performed for acidity prediction, achieving R2 = 0.97, with root mean square error of prediction = 4.37 for partial least squares model using most relevant wavelengths. These results demonstrate the feasibility of applying a low‐cost portable NIR spectrophotometer to predict quality parameters of palm oil.
Practical Application
This work presents results that show the feasibility of using a low‐cost portable near‐infrared spectrophotometer for the classification of raw palm oil samples according to free fatty acids contents. Regression models are presented as a fast and nondestructive alternative to classify samples for acidity, which is an important quality parameter and that directly affects the market value of crude palm oil. |
doi_str_mv | 10.1111/1750-3841.14467 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187534925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187534925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3727-c2e695acf60868315f3ab29057e7e007f89afef192ca69775ce19620dd65456b3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK2evUnAi5e0-5HdTcBLqVYrxRar52W7mYWUpFs3CdJ_b9JUD16cyzDDMy_Dg9A1wUPS1IhIjkMWR2RIokjIE9T_3ZyiPsaUhoREsocuynKD25mJc9RjWPIY87iP7pfOV3qdQ_A6ewtWOzCVdwVU4APrfLD0kGamytw2cDZY6rwIFlkejE2WZtX-Ep1ZnZdwdewD9DF9fJ88h_PF02wynoeGSSpDQ0EkXBsrcCxiRrhlek0TzCVIwFjaONEWLEmo0SKRkhsgiaA4TQWPuFizAbrrcnfefdZQVqrISgN5rrfg6lJREkvOooTyBr39g25c7bfNdweKMCGJbKhRRxnvytKDVTufFdrvFcGqFatajarVqA5im4ubY269LiD95X9MNoDogK8sh_1_eepl-rDqkr8B9L1_Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187136717</pqid></control><display><type>article</type><title>Portable NIR Spectrometer for Prediction of Palm Oil Acidity</title><source>Wiley Blackwell Single Titles</source><creator>Kaufmann, Karine Cristine ; Favero, Flávia de Faveri ; Vasconcelos, Marcus Arthur Marçal ; Godoy, Helena Teixeira ; Sampaio, Klicia Araujo ; Barbin, Douglas Fernandes</creator><creatorcontrib>Kaufmann, Karine Cristine ; Favero, Flávia de Faveri ; Vasconcelos, Marcus Arthur Marçal ; Godoy, Helena Teixeira ; Sampaio, Klicia Araujo ; Barbin, Douglas Fernandes</creatorcontrib><description>Palm oil is widely used in the food industry, and its quality is associated with the free fatty acids (FFA) content. Determination of FFA in oil is time‐consuming, requires chemicals and generates residues. There is a trend of applying process analytical technologies (PAT) for fast and nondestructive determination of oil parameters. Portable near‐infrared (NIR) spectrometers are cheaper than bench top equipment, and have been used for several tasks in the food processing industry, as it provides fast and reliable data for inline measurements. This study investigated the use of NIR spectra using a portable equipment, combined with both unsupervised and supervised multivariate analyses for identification of palm oil samples with different levels of FFA. Soft independent modeling of class analogy , k‐Nearest Neighbors, and linear discriminant analysis models were able to correctly identify 100% of the studied samples with selected wavelengths from NIR spectra. Calibration models were performed for acidity prediction, achieving R2 = 0.97, with root mean square error of prediction = 4.37 for partial least squares model using most relevant wavelengths. These results demonstrate the feasibility of applying a low‐cost portable NIR spectrophotometer to predict quality parameters of palm oil.
Practical Application
This work presents results that show the feasibility of using a low‐cost portable near‐infrared spectrophotometer for the classification of raw palm oil samples according to free fatty acids contents. Regression models are presented as a fast and nondestructive alternative to classify samples for acidity, which is an important quality parameter and that directly affects the market value of crude palm oil.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/1750-3841.14467</identifier><identifier>PMID: 30758058</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acidity ; chemical composition ; Crude oil ; Data processing ; Discriminant analysis ; Fatty acids ; Feasibility ; Food processing ; Food processing industry ; Food quality ; Infrared spectrometers ; Infrared spectrophotometers ; Market value ; oil ; Organic chemistry ; Palm oil ; Parameters ; Portable equipment ; Processing industry ; Regression analysis ; Regression models ; Spectrometers ; spectroscopy ; Vegetable oils ; Wavelengths</subject><ispartof>Journal of food science, 2019-03, Vol.84 (3), p.406-411</ispartof><rights>2019 Institute of Food Technologists</rights><rights>2019 Institute of Food Technologists®.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3727-c2e695acf60868315f3ab29057e7e007f89afef192ca69775ce19620dd65456b3</citedby><cites>FETCH-LOGICAL-c3727-c2e695acf60868315f3ab29057e7e007f89afef192ca69775ce19620dd65456b3</cites><orcidid>0000-0001-9767-8130 ; 0000-0002-9269-3785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1750-3841.14467$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1750-3841.14467$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30758058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaufmann, Karine Cristine</creatorcontrib><creatorcontrib>Favero, Flávia de Faveri</creatorcontrib><creatorcontrib>Vasconcelos, Marcus Arthur Marçal</creatorcontrib><creatorcontrib>Godoy, Helena Teixeira</creatorcontrib><creatorcontrib>Sampaio, Klicia Araujo</creatorcontrib><creatorcontrib>Barbin, Douglas Fernandes</creatorcontrib><title>Portable NIR Spectrometer for Prediction of Palm Oil Acidity</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>Palm oil is widely used in the food industry, and its quality is associated with the free fatty acids (FFA) content. Determination of FFA in oil is time‐consuming, requires chemicals and generates residues. There is a trend of applying process analytical technologies (PAT) for fast and nondestructive determination of oil parameters. Portable near‐infrared (NIR) spectrometers are cheaper than bench top equipment, and have been used for several tasks in the food processing industry, as it provides fast and reliable data for inline measurements. This study investigated the use of NIR spectra using a portable equipment, combined with both unsupervised and supervised multivariate analyses for identification of palm oil samples with different levels of FFA. Soft independent modeling of class analogy , k‐Nearest Neighbors, and linear discriminant analysis models were able to correctly identify 100% of the studied samples with selected wavelengths from NIR spectra. Calibration models were performed for acidity prediction, achieving R2 = 0.97, with root mean square error of prediction = 4.37 for partial least squares model using most relevant wavelengths. These results demonstrate the feasibility of applying a low‐cost portable NIR spectrophotometer to predict quality parameters of palm oil.
Practical Application
This work presents results that show the feasibility of using a low‐cost portable near‐infrared spectrophotometer for the classification of raw palm oil samples according to free fatty acids contents. Regression models are presented as a fast and nondestructive alternative to classify samples for acidity, which is an important quality parameter and that directly affects the market value of crude palm oil.</description><subject>Acidity</subject><subject>chemical composition</subject><subject>Crude oil</subject><subject>Data processing</subject><subject>Discriminant analysis</subject><subject>Fatty acids</subject><subject>Feasibility</subject><subject>Food processing</subject><subject>Food processing industry</subject><subject>Food quality</subject><subject>Infrared spectrometers</subject><subject>Infrared spectrophotometers</subject><subject>Market value</subject><subject>oil</subject><subject>Organic chemistry</subject><subject>Palm oil</subject><subject>Parameters</subject><subject>Portable equipment</subject><subject>Processing industry</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Spectrometers</subject><subject>spectroscopy</subject><subject>Vegetable oils</subject><subject>Wavelengths</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRbK2evUnAi5e0-5HdTcBLqVYrxRar52W7mYWUpFs3CdJ_b9JUD16cyzDDMy_Dg9A1wUPS1IhIjkMWR2RIokjIE9T_3ZyiPsaUhoREsocuynKD25mJc9RjWPIY87iP7pfOV3qdQ_A6ewtWOzCVdwVU4APrfLD0kGamytw2cDZY6rwIFlkejE2WZtX-Ep1ZnZdwdewD9DF9fJ88h_PF02wynoeGSSpDQ0EkXBsrcCxiRrhlek0TzCVIwFjaONEWLEmo0SKRkhsgiaA4TQWPuFizAbrrcnfefdZQVqrISgN5rrfg6lJREkvOooTyBr39g25c7bfNdweKMCGJbKhRRxnvytKDVTufFdrvFcGqFatajarVqA5im4ubY269LiD95X9MNoDogK8sh_1_eepl-rDqkr8B9L1_Xw</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Kaufmann, Karine Cristine</creator><creator>Favero, Flávia de Faveri</creator><creator>Vasconcelos, Marcus Arthur Marçal</creator><creator>Godoy, Helena Teixeira</creator><creator>Sampaio, Klicia Araujo</creator><creator>Barbin, Douglas Fernandes</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9767-8130</orcidid><orcidid>https://orcid.org/0000-0002-9269-3785</orcidid></search><sort><creationdate>201903</creationdate><title>Portable NIR Spectrometer for Prediction of Palm Oil Acidity</title><author>Kaufmann, Karine Cristine ; Favero, Flávia de Faveri ; Vasconcelos, Marcus Arthur Marçal ; Godoy, Helena Teixeira ; Sampaio, Klicia Araujo ; Barbin, Douglas Fernandes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3727-c2e695acf60868315f3ab29057e7e007f89afef192ca69775ce19620dd65456b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acidity</topic><topic>chemical composition</topic><topic>Crude oil</topic><topic>Data processing</topic><topic>Discriminant analysis</topic><topic>Fatty acids</topic><topic>Feasibility</topic><topic>Food processing</topic><topic>Food processing industry</topic><topic>Food quality</topic><topic>Infrared spectrometers</topic><topic>Infrared spectrophotometers</topic><topic>Market value</topic><topic>oil</topic><topic>Organic chemistry</topic><topic>Palm oil</topic><topic>Parameters</topic><topic>Portable equipment</topic><topic>Processing industry</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Spectrometers</topic><topic>spectroscopy</topic><topic>Vegetable oils</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaufmann, Karine Cristine</creatorcontrib><creatorcontrib>Favero, Flávia de Faveri</creatorcontrib><creatorcontrib>Vasconcelos, Marcus Arthur Marçal</creatorcontrib><creatorcontrib>Godoy, Helena Teixeira</creatorcontrib><creatorcontrib>Sampaio, Klicia Araujo</creatorcontrib><creatorcontrib>Barbin, Douglas Fernandes</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaufmann, Karine Cristine</au><au>Favero, Flávia de Faveri</au><au>Vasconcelos, Marcus Arthur Marçal</au><au>Godoy, Helena Teixeira</au><au>Sampaio, Klicia Araujo</au><au>Barbin, Douglas Fernandes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portable NIR Spectrometer for Prediction of Palm Oil Acidity</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2019-03</date><risdate>2019</risdate><volume>84</volume><issue>3</issue><spage>406</spage><epage>411</epage><pages>406-411</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><abstract>Palm oil is widely used in the food industry, and its quality is associated with the free fatty acids (FFA) content. Determination of FFA in oil is time‐consuming, requires chemicals and generates residues. There is a trend of applying process analytical technologies (PAT) for fast and nondestructive determination of oil parameters. Portable near‐infrared (NIR) spectrometers are cheaper than bench top equipment, and have been used for several tasks in the food processing industry, as it provides fast and reliable data for inline measurements. This study investigated the use of NIR spectra using a portable equipment, combined with both unsupervised and supervised multivariate analyses for identification of palm oil samples with different levels of FFA. Soft independent modeling of class analogy , k‐Nearest Neighbors, and linear discriminant analysis models were able to correctly identify 100% of the studied samples with selected wavelengths from NIR spectra. Calibration models were performed for acidity prediction, achieving R2 = 0.97, with root mean square error of prediction = 4.37 for partial least squares model using most relevant wavelengths. These results demonstrate the feasibility of applying a low‐cost portable NIR spectrophotometer to predict quality parameters of palm oil.
Practical Application
This work presents results that show the feasibility of using a low‐cost portable near‐infrared spectrophotometer for the classification of raw palm oil samples according to free fatty acids contents. Regression models are presented as a fast and nondestructive alternative to classify samples for acidity, which is an important quality parameter and that directly affects the market value of crude palm oil.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30758058</pmid><doi>10.1111/1750-3841.14467</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9767-8130</orcidid><orcidid>https://orcid.org/0000-0002-9269-3785</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1147 |
ispartof | Journal of food science, 2019-03, Vol.84 (3), p.406-411 |
issn | 0022-1147 1750-3841 |
language | eng |
recordid | cdi_proquest_miscellaneous_2187534925 |
source | Wiley Blackwell Single Titles |
subjects | Acidity chemical composition Crude oil Data processing Discriminant analysis Fatty acids Feasibility Food processing Food processing industry Food quality Infrared spectrometers Infrared spectrophotometers Market value oil Organic chemistry Palm oil Parameters Portable equipment Processing industry Regression analysis Regression models Spectrometers spectroscopy Vegetable oils Wavelengths |
title | Portable NIR Spectrometer for Prediction of Palm Oil Acidity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portable%20NIR%20Spectrometer%20for%20Prediction%20of%20Palm%20Oil%20Acidity&rft.jtitle=Journal%20of%20food%20science&rft.au=Kaufmann,%20Karine%20Cristine&rft.date=2019-03&rft.volume=84&rft.issue=3&rft.spage=406&rft.epage=411&rft.pages=406-411&rft.issn=0022-1147&rft.eissn=1750-3841&rft_id=info:doi/10.1111/1750-3841.14467&rft_dat=%3Cproquest_cross%3E2187534925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187136717&rft_id=info:pmid/30758058&rfr_iscdi=true |