Portable NIR Spectrometer for Prediction of Palm Oil Acidity

Palm oil is widely used in the food industry, and its quality is associated with the free fatty acids (FFA) content. Determination of FFA in oil is time‐consuming, requires chemicals and generates residues. There is a trend of applying process analytical technologies (PAT) for fast and nondestructiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food science 2019-03, Vol.84 (3), p.406-411
Hauptverfasser: Kaufmann, Karine Cristine, Favero, Flávia de Faveri, Vasconcelos, Marcus Arthur Marçal, Godoy, Helena Teixeira, Sampaio, Klicia Araujo, Barbin, Douglas Fernandes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 3
container_start_page 406
container_title Journal of food science
container_volume 84
creator Kaufmann, Karine Cristine
Favero, Flávia de Faveri
Vasconcelos, Marcus Arthur Marçal
Godoy, Helena Teixeira
Sampaio, Klicia Araujo
Barbin, Douglas Fernandes
description Palm oil is widely used in the food industry, and its quality is associated with the free fatty acids (FFA) content. Determination of FFA in oil is time‐consuming, requires chemicals and generates residues. There is a trend of applying process analytical technologies (PAT) for fast and nondestructive determination of oil parameters. Portable near‐infrared (NIR) spectrometers are cheaper than bench top equipment, and have been used for several tasks in the food processing industry, as it provides fast and reliable data for inline measurements. This study investigated the use of NIR spectra using a portable equipment, combined with both unsupervised and supervised multivariate analyses for identification of palm oil samples with different levels of FFA. Soft independent modeling of class analogy , k‐Nearest Neighbors, and linear discriminant analysis models were able to correctly identify 100% of the studied samples with selected wavelengths from NIR spectra. Calibration models were performed for acidity prediction, achieving R2 = 0.97, with root mean square error of prediction = 4.37 for partial least squares model using most relevant wavelengths. These results demonstrate the feasibility of applying a low‐cost portable NIR spectrophotometer to predict quality parameters of palm oil. Practical Application This work presents results that show the feasibility of using a low‐cost portable near‐infrared spectrophotometer for the classification of raw palm oil samples according to free fatty acids contents. Regression models are presented as a fast and nondestructive alternative to classify samples for acidity, which is an important quality parameter and that directly affects the market value of crude palm oil.
doi_str_mv 10.1111/1750-3841.14467
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187534925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187534925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3727-c2e695acf60868315f3ab29057e7e007f89afef192ca69775ce19620dd65456b3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK2evUnAi5e0-5HdTcBLqVYrxRar52W7mYWUpFs3CdJ_b9JUD16cyzDDMy_Dg9A1wUPS1IhIjkMWR2RIokjIE9T_3ZyiPsaUhoREsocuynKD25mJc9RjWPIY87iP7pfOV3qdQ_A6ewtWOzCVdwVU4APrfLD0kGamytw2cDZY6rwIFlkejE2WZtX-Ep1ZnZdwdewD9DF9fJ88h_PF02wynoeGSSpDQ0EkXBsrcCxiRrhlek0TzCVIwFjaONEWLEmo0SKRkhsgiaA4TQWPuFizAbrrcnfefdZQVqrISgN5rrfg6lJREkvOooTyBr39g25c7bfNdweKMCGJbKhRRxnvytKDVTufFdrvFcGqFatajarVqA5im4ubY269LiD95X9MNoDogK8sh_1_eepl-rDqkr8B9L1_Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187136717</pqid></control><display><type>article</type><title>Portable NIR Spectrometer for Prediction of Palm Oil Acidity</title><source>Wiley Blackwell Single Titles</source><creator>Kaufmann, Karine Cristine ; Favero, Flávia de Faveri ; Vasconcelos, Marcus Arthur Marçal ; Godoy, Helena Teixeira ; Sampaio, Klicia Araujo ; Barbin, Douglas Fernandes</creator><creatorcontrib>Kaufmann, Karine Cristine ; Favero, Flávia de Faveri ; Vasconcelos, Marcus Arthur Marçal ; Godoy, Helena Teixeira ; Sampaio, Klicia Araujo ; Barbin, Douglas Fernandes</creatorcontrib><description>Palm oil is widely used in the food industry, and its quality is associated with the free fatty acids (FFA) content. Determination of FFA in oil is time‐consuming, requires chemicals and generates residues. There is a trend of applying process analytical technologies (PAT) for fast and nondestructive determination of oil parameters. Portable near‐infrared (NIR) spectrometers are cheaper than bench top equipment, and have been used for several tasks in the food processing industry, as it provides fast and reliable data for inline measurements. This study investigated the use of NIR spectra using a portable equipment, combined with both unsupervised and supervised multivariate analyses for identification of palm oil samples with different levels of FFA. Soft independent modeling of class analogy , k‐Nearest Neighbors, and linear discriminant analysis models were able to correctly identify 100% of the studied samples with selected wavelengths from NIR spectra. Calibration models were performed for acidity prediction, achieving R2 = 0.97, with root mean square error of prediction = 4.37 for partial least squares model using most relevant wavelengths. These results demonstrate the feasibility of applying a low‐cost portable NIR spectrophotometer to predict quality parameters of palm oil. Practical Application This work presents results that show the feasibility of using a low‐cost portable near‐infrared spectrophotometer for the classification of raw palm oil samples according to free fatty acids contents. Regression models are presented as a fast and nondestructive alternative to classify samples for acidity, which is an important quality parameter and that directly affects the market value of crude palm oil.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/1750-3841.14467</identifier><identifier>PMID: 30758058</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acidity ; chemical composition ; Crude oil ; Data processing ; Discriminant analysis ; Fatty acids ; Feasibility ; Food processing ; Food processing industry ; Food quality ; Infrared spectrometers ; Infrared spectrophotometers ; Market value ; oil ; Organic chemistry ; Palm oil ; Parameters ; Portable equipment ; Processing industry ; Regression analysis ; Regression models ; Spectrometers ; spectroscopy ; Vegetable oils ; Wavelengths</subject><ispartof>Journal of food science, 2019-03, Vol.84 (3), p.406-411</ispartof><rights>2019 Institute of Food Technologists</rights><rights>2019 Institute of Food Technologists®.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3727-c2e695acf60868315f3ab29057e7e007f89afef192ca69775ce19620dd65456b3</citedby><cites>FETCH-LOGICAL-c3727-c2e695acf60868315f3ab29057e7e007f89afef192ca69775ce19620dd65456b3</cites><orcidid>0000-0001-9767-8130 ; 0000-0002-9269-3785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1750-3841.14467$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1750-3841.14467$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30758058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaufmann, Karine Cristine</creatorcontrib><creatorcontrib>Favero, Flávia de Faveri</creatorcontrib><creatorcontrib>Vasconcelos, Marcus Arthur Marçal</creatorcontrib><creatorcontrib>Godoy, Helena Teixeira</creatorcontrib><creatorcontrib>Sampaio, Klicia Araujo</creatorcontrib><creatorcontrib>Barbin, Douglas Fernandes</creatorcontrib><title>Portable NIR Spectrometer for Prediction of Palm Oil Acidity</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>Palm oil is widely used in the food industry, and its quality is associated with the free fatty acids (FFA) content. Determination of FFA in oil is time‐consuming, requires chemicals and generates residues. There is a trend of applying process analytical technologies (PAT) for fast and nondestructive determination of oil parameters. Portable near‐infrared (NIR) spectrometers are cheaper than bench top equipment, and have been used for several tasks in the food processing industry, as it provides fast and reliable data for inline measurements. This study investigated the use of NIR spectra using a portable equipment, combined with both unsupervised and supervised multivariate analyses for identification of palm oil samples with different levels of FFA. Soft independent modeling of class analogy , k‐Nearest Neighbors, and linear discriminant analysis models were able to correctly identify 100% of the studied samples with selected wavelengths from NIR spectra. Calibration models were performed for acidity prediction, achieving R2 = 0.97, with root mean square error of prediction = 4.37 for partial least squares model using most relevant wavelengths. These results demonstrate the feasibility of applying a low‐cost portable NIR spectrophotometer to predict quality parameters of palm oil. Practical Application This work presents results that show the feasibility of using a low‐cost portable near‐infrared spectrophotometer for the classification of raw palm oil samples according to free fatty acids contents. Regression models are presented as a fast and nondestructive alternative to classify samples for acidity, which is an important quality parameter and that directly affects the market value of crude palm oil.</description><subject>Acidity</subject><subject>chemical composition</subject><subject>Crude oil</subject><subject>Data processing</subject><subject>Discriminant analysis</subject><subject>Fatty acids</subject><subject>Feasibility</subject><subject>Food processing</subject><subject>Food processing industry</subject><subject>Food quality</subject><subject>Infrared spectrometers</subject><subject>Infrared spectrophotometers</subject><subject>Market value</subject><subject>oil</subject><subject>Organic chemistry</subject><subject>Palm oil</subject><subject>Parameters</subject><subject>Portable equipment</subject><subject>Processing industry</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Spectrometers</subject><subject>spectroscopy</subject><subject>Vegetable oils</subject><subject>Wavelengths</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRbK2evUnAi5e0-5HdTcBLqVYrxRar52W7mYWUpFs3CdJ_b9JUD16cyzDDMy_Dg9A1wUPS1IhIjkMWR2RIokjIE9T_3ZyiPsaUhoREsocuynKD25mJc9RjWPIY87iP7pfOV3qdQ_A6ewtWOzCVdwVU4APrfLD0kGamytw2cDZY6rwIFlkejE2WZtX-Ep1ZnZdwdewD9DF9fJ88h_PF02wynoeGSSpDQ0EkXBsrcCxiRrhlek0TzCVIwFjaONEWLEmo0SKRkhsgiaA4TQWPuFizAbrrcnfefdZQVqrISgN5rrfg6lJREkvOooTyBr39g25c7bfNdweKMCGJbKhRRxnvytKDVTufFdrvFcGqFatajarVqA5im4ubY269LiD95X9MNoDogK8sh_1_eepl-rDqkr8B9L1_Xw</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Kaufmann, Karine Cristine</creator><creator>Favero, Flávia de Faveri</creator><creator>Vasconcelos, Marcus Arthur Marçal</creator><creator>Godoy, Helena Teixeira</creator><creator>Sampaio, Klicia Araujo</creator><creator>Barbin, Douglas Fernandes</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9767-8130</orcidid><orcidid>https://orcid.org/0000-0002-9269-3785</orcidid></search><sort><creationdate>201903</creationdate><title>Portable NIR Spectrometer for Prediction of Palm Oil Acidity</title><author>Kaufmann, Karine Cristine ; Favero, Flávia de Faveri ; Vasconcelos, Marcus Arthur Marçal ; Godoy, Helena Teixeira ; Sampaio, Klicia Araujo ; Barbin, Douglas Fernandes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3727-c2e695acf60868315f3ab29057e7e007f89afef192ca69775ce19620dd65456b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acidity</topic><topic>chemical composition</topic><topic>Crude oil</topic><topic>Data processing</topic><topic>Discriminant analysis</topic><topic>Fatty acids</topic><topic>Feasibility</topic><topic>Food processing</topic><topic>Food processing industry</topic><topic>Food quality</topic><topic>Infrared spectrometers</topic><topic>Infrared spectrophotometers</topic><topic>Market value</topic><topic>oil</topic><topic>Organic chemistry</topic><topic>Palm oil</topic><topic>Parameters</topic><topic>Portable equipment</topic><topic>Processing industry</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Spectrometers</topic><topic>spectroscopy</topic><topic>Vegetable oils</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaufmann, Karine Cristine</creatorcontrib><creatorcontrib>Favero, Flávia de Faveri</creatorcontrib><creatorcontrib>Vasconcelos, Marcus Arthur Marçal</creatorcontrib><creatorcontrib>Godoy, Helena Teixeira</creatorcontrib><creatorcontrib>Sampaio, Klicia Araujo</creatorcontrib><creatorcontrib>Barbin, Douglas Fernandes</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaufmann, Karine Cristine</au><au>Favero, Flávia de Faveri</au><au>Vasconcelos, Marcus Arthur Marçal</au><au>Godoy, Helena Teixeira</au><au>Sampaio, Klicia Araujo</au><au>Barbin, Douglas Fernandes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portable NIR Spectrometer for Prediction of Palm Oil Acidity</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2019-03</date><risdate>2019</risdate><volume>84</volume><issue>3</issue><spage>406</spage><epage>411</epage><pages>406-411</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><abstract>Palm oil is widely used in the food industry, and its quality is associated with the free fatty acids (FFA) content. Determination of FFA in oil is time‐consuming, requires chemicals and generates residues. There is a trend of applying process analytical technologies (PAT) for fast and nondestructive determination of oil parameters. Portable near‐infrared (NIR) spectrometers are cheaper than bench top equipment, and have been used for several tasks in the food processing industry, as it provides fast and reliable data for inline measurements. This study investigated the use of NIR spectra using a portable equipment, combined with both unsupervised and supervised multivariate analyses for identification of palm oil samples with different levels of FFA. Soft independent modeling of class analogy , k‐Nearest Neighbors, and linear discriminant analysis models were able to correctly identify 100% of the studied samples with selected wavelengths from NIR spectra. Calibration models were performed for acidity prediction, achieving R2 = 0.97, with root mean square error of prediction = 4.37 for partial least squares model using most relevant wavelengths. These results demonstrate the feasibility of applying a low‐cost portable NIR spectrophotometer to predict quality parameters of palm oil. Practical Application This work presents results that show the feasibility of using a low‐cost portable near‐infrared spectrophotometer for the classification of raw palm oil samples according to free fatty acids contents. Regression models are presented as a fast and nondestructive alternative to classify samples for acidity, which is an important quality parameter and that directly affects the market value of crude palm oil.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30758058</pmid><doi>10.1111/1750-3841.14467</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9767-8130</orcidid><orcidid>https://orcid.org/0000-0002-9269-3785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1147
ispartof Journal of food science, 2019-03, Vol.84 (3), p.406-411
issn 0022-1147
1750-3841
language eng
recordid cdi_proquest_miscellaneous_2187534925
source Wiley Blackwell Single Titles
subjects Acidity
chemical composition
Crude oil
Data processing
Discriminant analysis
Fatty acids
Feasibility
Food processing
Food processing industry
Food quality
Infrared spectrometers
Infrared spectrophotometers
Market value
oil
Organic chemistry
Palm oil
Parameters
Portable equipment
Processing industry
Regression analysis
Regression models
Spectrometers
spectroscopy
Vegetable oils
Wavelengths
title Portable NIR Spectrometer for Prediction of Palm Oil Acidity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portable%20NIR%20Spectrometer%20for%20Prediction%20of%20Palm%20Oil%20Acidity&rft.jtitle=Journal%20of%20food%20science&rft.au=Kaufmann,%20Karine%20Cristine&rft.date=2019-03&rft.volume=84&rft.issue=3&rft.spage=406&rft.epage=411&rft.pages=406-411&rft.issn=0022-1147&rft.eissn=1750-3841&rft_id=info:doi/10.1111/1750-3841.14467&rft_dat=%3Cproquest_cross%3E2187534925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187136717&rft_id=info:pmid/30758058&rfr_iscdi=true