Measuring Hall viscosity of graphene’s electron fluid
An electrical conductor subjected to a magnetic field exhibits the Hall effect in the presence of current flow. Here, we report a qualitative deviation from the standard behavior in electron systems with high viscosity. We found that the viscous electron fluid in graphene responds to nonquantizing m...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2019-04, Vol.364 (6436), p.162-165 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | 6436 |
container_start_page | 162 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 364 |
creator | Berdyugin, A. I. Xu, S. G. Pellegrino, F. M. D. Kumar, R. Krishna Principi, A. Torre, I. Shalom, M. Ben Taniguchi, T. Watanabe, K. Grigorieva, I. V. Polini, M. Geim, A. K. Bandurin, D. A. |
description | An electrical conductor subjected to a magnetic field exhibits the Hall effect in the presence of current flow. Here, we report a qualitative deviation from the standard behavior in electron systems with high viscosity. We found that the viscous electron fluid in graphene responds to nonquantizing magnetic fields by producing an electric field opposite to that generated by the ordinary Hall effect. The viscous contribution is substantial and identified by studying local voltages that arise in the vicinity of current-injecting contacts. We analyzed the anomaly over a wide range of temperatures and carrier densities and extracted the Hall viscosity, a dissipationless transport coefficient that was long identified theoretically but remained elusive in experiments. |
doi_str_mv | 10.1126/science.aau0685 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187522002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26649243</jstor_id><sourcerecordid>26649243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-9230ec9bd969b9487d219886475fd2684154f2e2581ed2f13eff1f3a4e07328e3</originalsourceid><addsrcrecordid>eNpdkL1OwzAUhS0EglKYmUCRWFja2tc_sUdUAUUqYoE5cpPrkipNip0gdeM1eD2eBKOGDkx3ON89OvoIuWB0zBioSchLrHMcW9tRpeUBGTBq5MgA5YdkQClXI01TeUJOQ1hRGjPDj8kJp5oZA2ZA0ie0ofNlvUxmtqqSjzLkTSjbbdK4ZOnt5g1r_P78CglWmLe-qRNXdWVxRo6crQKe93dIXu_vXqaz0fz54XF6Ox_lQoo2DuEUc7MojDILI3RaADNaK5FKV4DSgknhAEFqhgU4xtE55rgVSFMOGvmQ3Ox6N7557zC02TouxKqyNTZdyIDpVAJQChG9_oeums7XcV0WAQ1cQSwdksmOyn0TgkeXbXy5tn6bMZr9Os16p1nvNH5c9b3dYo3Fnv-TGIHLHbAKbeP3OSglDAjOfwBT4H0h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2208236207</pqid></control><display><type>article</type><title>Measuring Hall viscosity of graphene’s electron fluid</title><source>Science Magazine</source><creator>Berdyugin, A. I. ; Xu, S. G. ; Pellegrino, F. M. D. ; Kumar, R. Krishna ; Principi, A. ; Torre, I. ; Shalom, M. Ben ; Taniguchi, T. ; Watanabe, K. ; Grigorieva, I. V. ; Polini, M. ; Geim, A. K. ; Bandurin, D. A.</creator><creatorcontrib>Berdyugin, A. I. ; Xu, S. G. ; Pellegrino, F. M. D. ; Kumar, R. Krishna ; Principi, A. ; Torre, I. ; Shalom, M. Ben ; Taniguchi, T. ; Watanabe, K. ; Grigorieva, I. V. ; Polini, M. ; Geim, A. K. ; Bandurin, D. A.</creatorcontrib><description>An electrical conductor subjected to a magnetic field exhibits the Hall effect in the presence of current flow. Here, we report a qualitative deviation from the standard behavior in electron systems with high viscosity. We found that the viscous electron fluid in graphene responds to nonquantizing magnetic fields by producing an electric field opposite to that generated by the ordinary Hall effect. The viscous contribution is substantial and identified by studying local voltages that arise in the vicinity of current-injecting contacts. We analyzed the anomaly over a wide range of temperatures and carrier densities and extracted the Hall viscosity, a dissipationless transport coefficient that was long identified theoretically but remained elusive in experiments.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aau0685</identifier><identifier>PMID: 30819929</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Carrier density ; Conductors ; Electric conductors ; Electric contacts ; Electric fields ; Electrical resistivity ; Electromagnetism ; Electron transport ; Fluid dynamics ; Fluid flow ; Graphene ; Hall effect ; Hydrodynamics ; Magnetic fields ; Magnetism ; Viscosity</subject><ispartof>Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6436), p.162-165</ispartof><rights>Copyright © 2019, American Association for the Advancement of Science.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-9230ec9bd969b9487d219886475fd2684154f2e2581ed2f13eff1f3a4e07328e3</citedby><cites>FETCH-LOGICAL-c454t-9230ec9bd969b9487d219886475fd2684154f2e2581ed2f13eff1f3a4e07328e3</cites><orcidid>0000-0001-9257-4105 ; 0000-0001-5781-0037 ; 0000-0001-5991-7778 ; 0000-0002-7537-6227 ; 0000-0003-3701-8119 ; 0000-0003-0857-4466 ; 0000-0001-5425-1292 ; 0000-0003-2861-8331 ; 0000-0002-0589-5291 ; 0000-0001-6515-181X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30819929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berdyugin, A. I.</creatorcontrib><creatorcontrib>Xu, S. G.</creatorcontrib><creatorcontrib>Pellegrino, F. M. D.</creatorcontrib><creatorcontrib>Kumar, R. Krishna</creatorcontrib><creatorcontrib>Principi, A.</creatorcontrib><creatorcontrib>Torre, I.</creatorcontrib><creatorcontrib>Shalom, M. Ben</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Grigorieva, I. V.</creatorcontrib><creatorcontrib>Polini, M.</creatorcontrib><creatorcontrib>Geim, A. K.</creatorcontrib><creatorcontrib>Bandurin, D. A.</creatorcontrib><title>Measuring Hall viscosity of graphene’s electron fluid</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>An electrical conductor subjected to a magnetic field exhibits the Hall effect in the presence of current flow. Here, we report a qualitative deviation from the standard behavior in electron systems with high viscosity. We found that the viscous electron fluid in graphene responds to nonquantizing magnetic fields by producing an electric field opposite to that generated by the ordinary Hall effect. The viscous contribution is substantial and identified by studying local voltages that arise in the vicinity of current-injecting contacts. We analyzed the anomaly over a wide range of temperatures and carrier densities and extracted the Hall viscosity, a dissipationless transport coefficient that was long identified theoretically but remained elusive in experiments.</description><subject>Carrier density</subject><subject>Conductors</subject><subject>Electric conductors</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrical resistivity</subject><subject>Electromagnetism</subject><subject>Electron transport</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Graphene</subject><subject>Hall effect</subject><subject>Hydrodynamics</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Viscosity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkL1OwzAUhS0EglKYmUCRWFja2tc_sUdUAUUqYoE5cpPrkipNip0gdeM1eD2eBKOGDkx3ON89OvoIuWB0zBioSchLrHMcW9tRpeUBGTBq5MgA5YdkQClXI01TeUJOQ1hRGjPDj8kJp5oZA2ZA0ie0ofNlvUxmtqqSjzLkTSjbbdK4ZOnt5g1r_P78CglWmLe-qRNXdWVxRo6crQKe93dIXu_vXqaz0fz54XF6Ox_lQoo2DuEUc7MojDILI3RaADNaK5FKV4DSgknhAEFqhgU4xtE55rgVSFMOGvmQ3Ox6N7557zC02TouxKqyNTZdyIDpVAJQChG9_oeums7XcV0WAQ1cQSwdksmOyn0TgkeXbXy5tn6bMZr9Os16p1nvNH5c9b3dYo3Fnv-TGIHLHbAKbeP3OSglDAjOfwBT4H0h</recordid><startdate>20190412</startdate><enddate>20190412</enddate><creator>Berdyugin, A. I.</creator><creator>Xu, S. G.</creator><creator>Pellegrino, F. M. D.</creator><creator>Kumar, R. Krishna</creator><creator>Principi, A.</creator><creator>Torre, I.</creator><creator>Shalom, M. Ben</creator><creator>Taniguchi, T.</creator><creator>Watanabe, K.</creator><creator>Grigorieva, I. V.</creator><creator>Polini, M.</creator><creator>Geim, A. K.</creator><creator>Bandurin, D. A.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9257-4105</orcidid><orcidid>https://orcid.org/0000-0001-5781-0037</orcidid><orcidid>https://orcid.org/0000-0001-5991-7778</orcidid><orcidid>https://orcid.org/0000-0002-7537-6227</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-0857-4466</orcidid><orcidid>https://orcid.org/0000-0001-5425-1292</orcidid><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid><orcidid>https://orcid.org/0000-0002-0589-5291</orcidid><orcidid>https://orcid.org/0000-0001-6515-181X</orcidid></search><sort><creationdate>20190412</creationdate><title>Measuring Hall viscosity of graphene’s electron fluid</title><author>Berdyugin, A. I. ; Xu, S. G. ; Pellegrino, F. M. D. ; Kumar, R. Krishna ; Principi, A. ; Torre, I. ; Shalom, M. Ben ; Taniguchi, T. ; Watanabe, K. ; Grigorieva, I. V. ; Polini, M. ; Geim, A. K. ; Bandurin, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-9230ec9bd969b9487d219886475fd2684154f2e2581ed2f13eff1f3a4e07328e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carrier density</topic><topic>Conductors</topic><topic>Electric conductors</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrical resistivity</topic><topic>Electromagnetism</topic><topic>Electron transport</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Graphene</topic><topic>Hall effect</topic><topic>Hydrodynamics</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berdyugin, A. I.</creatorcontrib><creatorcontrib>Xu, S. G.</creatorcontrib><creatorcontrib>Pellegrino, F. M. D.</creatorcontrib><creatorcontrib>Kumar, R. Krishna</creatorcontrib><creatorcontrib>Principi, A.</creatorcontrib><creatorcontrib>Torre, I.</creatorcontrib><creatorcontrib>Shalom, M. Ben</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Grigorieva, I. V.</creatorcontrib><creatorcontrib>Polini, M.</creatorcontrib><creatorcontrib>Geim, A. K.</creatorcontrib><creatorcontrib>Bandurin, D. A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berdyugin, A. I.</au><au>Xu, S. G.</au><au>Pellegrino, F. M. D.</au><au>Kumar, R. Krishna</au><au>Principi, A.</au><au>Torre, I.</au><au>Shalom, M. Ben</au><au>Taniguchi, T.</au><au>Watanabe, K.</au><au>Grigorieva, I. V.</au><au>Polini, M.</au><au>Geim, A. K.</au><au>Bandurin, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring Hall viscosity of graphene’s electron fluid</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-04-12</date><risdate>2019</risdate><volume>364</volume><issue>6436</issue><spage>162</spage><epage>165</epage><pages>162-165</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>An electrical conductor subjected to a magnetic field exhibits the Hall effect in the presence of current flow. Here, we report a qualitative deviation from the standard behavior in electron systems with high viscosity. We found that the viscous electron fluid in graphene responds to nonquantizing magnetic fields by producing an electric field opposite to that generated by the ordinary Hall effect. The viscous contribution is substantial and identified by studying local voltages that arise in the vicinity of current-injecting contacts. We analyzed the anomaly over a wide range of temperatures and carrier densities and extracted the Hall viscosity, a dissipationless transport coefficient that was long identified theoretically but remained elusive in experiments.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>30819929</pmid><doi>10.1126/science.aau0685</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9257-4105</orcidid><orcidid>https://orcid.org/0000-0001-5781-0037</orcidid><orcidid>https://orcid.org/0000-0001-5991-7778</orcidid><orcidid>https://orcid.org/0000-0002-7537-6227</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-0857-4466</orcidid><orcidid>https://orcid.org/0000-0001-5425-1292</orcidid><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid><orcidid>https://orcid.org/0000-0002-0589-5291</orcidid><orcidid>https://orcid.org/0000-0001-6515-181X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6436), p.162-165 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2187522002 |
source | Science Magazine |
subjects | Carrier density Conductors Electric conductors Electric contacts Electric fields Electrical resistivity Electromagnetism Electron transport Fluid dynamics Fluid flow Graphene Hall effect Hydrodynamics Magnetic fields Magnetism Viscosity |
title | Measuring Hall viscosity of graphene’s electron fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Hall%20viscosity%20of%20graphene%E2%80%99s%20electron%20fluid&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Berdyugin,%20A.%20I.&rft.date=2019-04-12&rft.volume=364&rft.issue=6436&rft.spage=162&rft.epage=165&rft.pages=162-165&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aau0685&rft_dat=%3Cjstor_proqu%3E26649243%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2208236207&rft_id=info:pmid/30819929&rft_jstor_id=26649243&rfr_iscdi=true |