Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media

With the aim of applying redox‐neutral cascade reactions in organic media, fusions of a type II flavin‐containing monooxygenase (FMO‐E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2019-07, Vol.20 (13), p.1653-1658
Hauptverfasser: Huang, Lei, Aalbers, Friso S., Tang, Wei, Röllig, Robert, Fraaije, Marco W., Kara, Selin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1658
container_issue 13
container_start_page 1653
container_title Chembiochem : a European journal of chemical biology
container_volume 20
creator Huang, Lei
Aalbers, Friso S.
Tang, Wei
Röllig, Robert
Fraaije, Marco W.
Kara, Selin
description With the aim of applying redox‐neutral cascade reactions in organic media, fusions of a type II flavin‐containing monooxygenase (FMO‐E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity. The resulting bifunctional enzyme retained the catalytic properties of both individual enzymes. The lyophilized cell‐free extract containing the bifunctional enzyme was applied for the convergent cascade reaction consisting of cyclobutanone and butane‐1,4‐diol in different microaqueous media with only 5 % (v/v) aqueous buffer without any addition of external cofactor. Methyl tert‐butyl ether and cyclopentyl methyl ether were found to be the best organic media for the synthesis of γ‐butyrolactone, resulting in about 27 % analytical yield. The power of two: A monooxygenase (FMO‐E) and an alcohol dehydrogenase (HLADH) are fused for use in predominantly organic media. The enzyme orientation and expression vector influence the overall fusion enzyme activity. The fusion allows cascade reactions to be performed in unconventional media.
doi_str_mv 10.1002/cbic.201800814
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187027019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187027019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4504-dabc3137f1c4ab643cb0d316ac740350d65ae1a1a7ba8f767aa9c80a22af4b2f3</originalsourceid><addsrcrecordid>eNqF0U9P2zAYBnBrYqJd4brjFInLLi2v_yROjiXAhkTVC5ytN45TjNK42A2QnfgO-4b7JDNqYdIunF7L-r2PLD-EfKUwowDsVFdWzxjQHCCn4hMZU8GLqcw4P9ifBWNyRL6EcA8ARcbpIRnxiGnO0jExpesejV-ZbpuUGDTWJs4ttsMvUyfVkCxc59zzEAEG8-fl97zV7s61ybm5G2rvdvfJZR-s65L5ZtPauGe7ZOlX2FmdLExt8Yh8brAN5ng_J-T28uKm_Dm9Xv64KufXUy1SENMaK80plw3VAqtMcF1BzWmGWgrgKdRZioYiRVlh3shMIhY6B2QMG1Gxhk_I913uxruH3oStWtugTdtiZ1wfFKO5BCaBFpGe_EfvXe-7-DrFWJZmkLKcRjXbKe1dCN40auPtGv2gKKjXAtRrAeq9gLjwbR_bV2tTv_O3H4-g2IEn25rhgzhVnl2V_8L_AlICkzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265605281</pqid></control><display><type>article</type><title>Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Lei ; Aalbers, Friso S. ; Tang, Wei ; Röllig, Robert ; Fraaije, Marco W. ; Kara, Selin</creator><creatorcontrib>Huang, Lei ; Aalbers, Friso S. ; Tang, Wei ; Röllig, Robert ; Fraaije, Marco W. ; Kara, Selin</creatorcontrib><description>With the aim of applying redox‐neutral cascade reactions in organic media, fusions of a type II flavin‐containing monooxygenase (FMO‐E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity. The resulting bifunctional enzyme retained the catalytic properties of both individual enzymes. The lyophilized cell‐free extract containing the bifunctional enzyme was applied for the convergent cascade reaction consisting of cyclobutanone and butane‐1,4‐diol in different microaqueous media with only 5 % (v/v) aqueous buffer without any addition of external cofactor. Methyl tert‐butyl ether and cyclopentyl methyl ether were found to be the best organic media for the synthesis of γ‐butyrolactone, resulting in about 27 % analytical yield. The power of two: A monooxygenase (FMO‐E) and an alcohol dehydrogenase (HLADH) are fused for use in predominantly organic media. The enzyme orientation and expression vector influence the overall fusion enzyme activity. The fusion allows cascade reactions to be performed in unconventional media.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201800814</identifier><identifier>PMID: 30811825</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>4-Butyrolactone - chemical synthesis ; Alcohol ; Alcohol dehydrogenase ; Alcohol Dehydrogenase - chemistry ; Alcohol Dehydrogenase - genetics ; Alcohol Dehydrogenase - isolation &amp; purification ; Alcohols ; Animals ; biocatalysis ; Butane ; Butyrolactone ; Cascade chemical reactions ; Catalysis ; Convergence ; Dehydrogenase ; Dehydrogenases ; domino reactions ; Enzymatic activity ; Enzyme activity ; Enzymes ; Escherichia coli - genetics ; Flavin ; Freeze Drying ; fusion enzymes ; Horses ; Kinetics ; Methyl Ethers - chemistry ; Mixed Function Oxygenases - chemistry ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - isolation &amp; purification ; Monooxygenase ; Multifunctional Enzymes - chemistry ; Multifunctional Enzymes - genetics ; Multifunctional Enzymes - isolation &amp; purification ; Protein Engineering ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - isolation &amp; purification ; Rhodococcus - enzymology ; solvent effects ; Solvents - chemistry</subject><ispartof>Chembiochem : a European journal of chemical biology, 2019-07, Vol.20 (13), p.1653-1658</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4504-dabc3137f1c4ab643cb0d316ac740350d65ae1a1a7ba8f767aa9c80a22af4b2f3</citedby><cites>FETCH-LOGICAL-c4504-dabc3137f1c4ab643cb0d316ac740350d65ae1a1a7ba8f767aa9c80a22af4b2f3</cites><orcidid>0000-0001-6754-2814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.201800814$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.201800814$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30811825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Aalbers, Friso S.</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Röllig, Robert</creatorcontrib><creatorcontrib>Fraaije, Marco W.</creatorcontrib><creatorcontrib>Kara, Selin</creatorcontrib><title>Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>With the aim of applying redox‐neutral cascade reactions in organic media, fusions of a type II flavin‐containing monooxygenase (FMO‐E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity. The resulting bifunctional enzyme retained the catalytic properties of both individual enzymes. The lyophilized cell‐free extract containing the bifunctional enzyme was applied for the convergent cascade reaction consisting of cyclobutanone and butane‐1,4‐diol in different microaqueous media with only 5 % (v/v) aqueous buffer without any addition of external cofactor. Methyl tert‐butyl ether and cyclopentyl methyl ether were found to be the best organic media for the synthesis of γ‐butyrolactone, resulting in about 27 % analytical yield. The power of two: A monooxygenase (FMO‐E) and an alcohol dehydrogenase (HLADH) are fused for use in predominantly organic media. The enzyme orientation and expression vector influence the overall fusion enzyme activity. The fusion allows cascade reactions to be performed in unconventional media.</description><subject>4-Butyrolactone - chemical synthesis</subject><subject>Alcohol</subject><subject>Alcohol dehydrogenase</subject><subject>Alcohol Dehydrogenase - chemistry</subject><subject>Alcohol Dehydrogenase - genetics</subject><subject>Alcohol Dehydrogenase - isolation &amp; purification</subject><subject>Alcohols</subject><subject>Animals</subject><subject>biocatalysis</subject><subject>Butane</subject><subject>Butyrolactone</subject><subject>Cascade chemical reactions</subject><subject>Catalysis</subject><subject>Convergence</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>domino reactions</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Flavin</subject><subject>Freeze Drying</subject><subject>fusion enzymes</subject><subject>Horses</subject><subject>Kinetics</subject><subject>Methyl Ethers - chemistry</subject><subject>Mixed Function Oxygenases - chemistry</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - isolation &amp; purification</subject><subject>Monooxygenase</subject><subject>Multifunctional Enzymes - chemistry</subject><subject>Multifunctional Enzymes - genetics</subject><subject>Multifunctional Enzymes - isolation &amp; purification</subject><subject>Protein Engineering</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - isolation &amp; purification</subject><subject>Rhodococcus - enzymology</subject><subject>solvent effects</subject><subject>Solvents - chemistry</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9P2zAYBnBrYqJd4brjFInLLi2v_yROjiXAhkTVC5ytN45TjNK42A2QnfgO-4b7JDNqYdIunF7L-r2PLD-EfKUwowDsVFdWzxjQHCCn4hMZU8GLqcw4P9ifBWNyRL6EcA8ARcbpIRnxiGnO0jExpesejV-ZbpuUGDTWJs4ttsMvUyfVkCxc59zzEAEG8-fl97zV7s61ybm5G2rvdvfJZR-s65L5ZtPauGe7ZOlX2FmdLExt8Yh8brAN5ng_J-T28uKm_Dm9Xv64KufXUy1SENMaK80plw3VAqtMcF1BzWmGWgrgKdRZioYiRVlh3shMIhY6B2QMG1Gxhk_I913uxruH3oStWtugTdtiZ1wfFKO5BCaBFpGe_EfvXe-7-DrFWJZmkLKcRjXbKe1dCN40auPtGv2gKKjXAtRrAeq9gLjwbR_bV2tTv_O3H4-g2IEn25rhgzhVnl2V_8L_AlICkzA</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Huang, Lei</creator><creator>Aalbers, Friso S.</creator><creator>Tang, Wei</creator><creator>Röllig, Robert</creator><creator>Fraaije, Marco W.</creator><creator>Kara, Selin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6754-2814</orcidid></search><sort><creationdate>20190701</creationdate><title>Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media</title><author>Huang, Lei ; Aalbers, Friso S. ; Tang, Wei ; Röllig, Robert ; Fraaije, Marco W. ; Kara, Selin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4504-dabc3137f1c4ab643cb0d316ac740350d65ae1a1a7ba8f767aa9c80a22af4b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>4-Butyrolactone - chemical synthesis</topic><topic>Alcohol</topic><topic>Alcohol dehydrogenase</topic><topic>Alcohol Dehydrogenase - chemistry</topic><topic>Alcohol Dehydrogenase - genetics</topic><topic>Alcohol Dehydrogenase - isolation &amp; purification</topic><topic>Alcohols</topic><topic>Animals</topic><topic>biocatalysis</topic><topic>Butane</topic><topic>Butyrolactone</topic><topic>Cascade chemical reactions</topic><topic>Catalysis</topic><topic>Convergence</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>domino reactions</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Flavin</topic><topic>Freeze Drying</topic><topic>fusion enzymes</topic><topic>Horses</topic><topic>Kinetics</topic><topic>Methyl Ethers - chemistry</topic><topic>Mixed Function Oxygenases - chemistry</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - isolation &amp; purification</topic><topic>Monooxygenase</topic><topic>Multifunctional Enzymes - chemistry</topic><topic>Multifunctional Enzymes - genetics</topic><topic>Multifunctional Enzymes - isolation &amp; purification</topic><topic>Protein Engineering</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - isolation &amp; purification</topic><topic>Rhodococcus - enzymology</topic><topic>solvent effects</topic><topic>Solvents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Aalbers, Friso S.</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Röllig, Robert</creatorcontrib><creatorcontrib>Fraaije, Marco W.</creatorcontrib><creatorcontrib>Kara, Selin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lei</au><au>Aalbers, Friso S.</au><au>Tang, Wei</au><au>Röllig, Robert</au><au>Fraaije, Marco W.</au><au>Kara, Selin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>20</volume><issue>13</issue><spage>1653</spage><epage>1658</epage><pages>1653-1658</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>With the aim of applying redox‐neutral cascade reactions in organic media, fusions of a type II flavin‐containing monooxygenase (FMO‐E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity. The resulting bifunctional enzyme retained the catalytic properties of both individual enzymes. The lyophilized cell‐free extract containing the bifunctional enzyme was applied for the convergent cascade reaction consisting of cyclobutanone and butane‐1,4‐diol in different microaqueous media with only 5 % (v/v) aqueous buffer without any addition of external cofactor. Methyl tert‐butyl ether and cyclopentyl methyl ether were found to be the best organic media for the synthesis of γ‐butyrolactone, resulting in about 27 % analytical yield. The power of two: A monooxygenase (FMO‐E) and an alcohol dehydrogenase (HLADH) are fused for use in predominantly organic media. The enzyme orientation and expression vector influence the overall fusion enzyme activity. The fusion allows cascade reactions to be performed in unconventional media.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30811825</pmid><doi>10.1002/cbic.201800814</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6754-2814</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2019-07, Vol.20 (13), p.1653-1658
issn 1439-4227
1439-7633
language eng
recordid cdi_proquest_miscellaneous_2187027019
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 4-Butyrolactone - chemical synthesis
Alcohol
Alcohol dehydrogenase
Alcohol Dehydrogenase - chemistry
Alcohol Dehydrogenase - genetics
Alcohol Dehydrogenase - isolation & purification
Alcohols
Animals
biocatalysis
Butane
Butyrolactone
Cascade chemical reactions
Catalysis
Convergence
Dehydrogenase
Dehydrogenases
domino reactions
Enzymatic activity
Enzyme activity
Enzymes
Escherichia coli - genetics
Flavin
Freeze Drying
fusion enzymes
Horses
Kinetics
Methyl Ethers - chemistry
Mixed Function Oxygenases - chemistry
Mixed Function Oxygenases - genetics
Mixed Function Oxygenases - isolation & purification
Monooxygenase
Multifunctional Enzymes - chemistry
Multifunctional Enzymes - genetics
Multifunctional Enzymes - isolation & purification
Protein Engineering
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - isolation & purification
Rhodococcus - enzymology
solvent effects
Solvents - chemistry
title Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergent%20Cascade%20Catalyzed%20by%20Monooxygenase%E2%80%93Alcohol%20Dehydrogenase%20Fusion%20Applied%20in%20Organic%20Media&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Huang,%20Lei&rft.date=2019-07-01&rft.volume=20&rft.issue=13&rft.spage=1653&rft.epage=1658&rft.pages=1653-1658&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201800814&rft_dat=%3Cproquest_cross%3E2187027019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265605281&rft_id=info:pmid/30811825&rfr_iscdi=true