Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media
With the aim of applying redox‐neutral cascade reactions in organic media, fusions of a type II flavin‐containing monooxygenase (FMO‐E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity...
Gespeichert in:
Veröffentlicht in: | Chembiochem : a European journal of chemical biology 2019-07, Vol.20 (13), p.1653-1658 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1658 |
---|---|
container_issue | 13 |
container_start_page | 1653 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 20 |
creator | Huang, Lei Aalbers, Friso S. Tang, Wei Röllig, Robert Fraaije, Marco W. Kara, Selin |
description | With the aim of applying redox‐neutral cascade reactions in organic media, fusions of a type II flavin‐containing monooxygenase (FMO‐E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity. The resulting bifunctional enzyme retained the catalytic properties of both individual enzymes. The lyophilized cell‐free extract containing the bifunctional enzyme was applied for the convergent cascade reaction consisting of cyclobutanone and butane‐1,4‐diol in different microaqueous media with only 5 % (v/v) aqueous buffer without any addition of external cofactor. Methyl tert‐butyl ether and cyclopentyl methyl ether were found to be the best organic media for the synthesis of γ‐butyrolactone, resulting in about 27 % analytical yield.
The power of two: A monooxygenase (FMO‐E) and an alcohol dehydrogenase (HLADH) are fused for use in predominantly organic media. The enzyme orientation and expression vector influence the overall fusion enzyme activity. The fusion allows cascade reactions to be performed in unconventional media. |
doi_str_mv | 10.1002/cbic.201800814 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187027019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187027019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4504-dabc3137f1c4ab643cb0d316ac740350d65ae1a1a7ba8f767aa9c80a22af4b2f3</originalsourceid><addsrcrecordid>eNqF0U9P2zAYBnBrYqJd4brjFInLLi2v_yROjiXAhkTVC5ytN45TjNK42A2QnfgO-4b7JDNqYdIunF7L-r2PLD-EfKUwowDsVFdWzxjQHCCn4hMZU8GLqcw4P9ifBWNyRL6EcA8ARcbpIRnxiGnO0jExpesejV-ZbpuUGDTWJs4ttsMvUyfVkCxc59zzEAEG8-fl97zV7s61ybm5G2rvdvfJZR-s65L5ZtPauGe7ZOlX2FmdLExt8Yh8brAN5ng_J-T28uKm_Dm9Xv64KufXUy1SENMaK80plw3VAqtMcF1BzWmGWgrgKdRZioYiRVlh3shMIhY6B2QMG1Gxhk_I913uxruH3oStWtugTdtiZ1wfFKO5BCaBFpGe_EfvXe-7-DrFWJZmkLKcRjXbKe1dCN40auPtGv2gKKjXAtRrAeq9gLjwbR_bV2tTv_O3H4-g2IEn25rhgzhVnl2V_8L_AlICkzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265605281</pqid></control><display><type>article</type><title>Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Lei ; Aalbers, Friso S. ; Tang, Wei ; Röllig, Robert ; Fraaije, Marco W. ; Kara, Selin</creator><creatorcontrib>Huang, Lei ; Aalbers, Friso S. ; Tang, Wei ; Röllig, Robert ; Fraaije, Marco W. ; Kara, Selin</creatorcontrib><description>With the aim of applying redox‐neutral cascade reactions in organic media, fusions of a type II flavin‐containing monooxygenase (FMO‐E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity. The resulting bifunctional enzyme retained the catalytic properties of both individual enzymes. The lyophilized cell‐free extract containing the bifunctional enzyme was applied for the convergent cascade reaction consisting of cyclobutanone and butane‐1,4‐diol in different microaqueous media with only 5 % (v/v) aqueous buffer without any addition of external cofactor. Methyl tert‐butyl ether and cyclopentyl methyl ether were found to be the best organic media for the synthesis of γ‐butyrolactone, resulting in about 27 % analytical yield.
The power of two: A monooxygenase (FMO‐E) and an alcohol dehydrogenase (HLADH) are fused for use in predominantly organic media. The enzyme orientation and expression vector influence the overall fusion enzyme activity. The fusion allows cascade reactions to be performed in unconventional media.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201800814</identifier><identifier>PMID: 30811825</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>4-Butyrolactone - chemical synthesis ; Alcohol ; Alcohol dehydrogenase ; Alcohol Dehydrogenase - chemistry ; Alcohol Dehydrogenase - genetics ; Alcohol Dehydrogenase - isolation & purification ; Alcohols ; Animals ; biocatalysis ; Butane ; Butyrolactone ; Cascade chemical reactions ; Catalysis ; Convergence ; Dehydrogenase ; Dehydrogenases ; domino reactions ; Enzymatic activity ; Enzyme activity ; Enzymes ; Escherichia coli - genetics ; Flavin ; Freeze Drying ; fusion enzymes ; Horses ; Kinetics ; Methyl Ethers - chemistry ; Mixed Function Oxygenases - chemistry ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - isolation & purification ; Monooxygenase ; Multifunctional Enzymes - chemistry ; Multifunctional Enzymes - genetics ; Multifunctional Enzymes - isolation & purification ; Protein Engineering ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - isolation & purification ; Rhodococcus - enzymology ; solvent effects ; Solvents - chemistry</subject><ispartof>Chembiochem : a European journal of chemical biology, 2019-07, Vol.20 (13), p.1653-1658</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4504-dabc3137f1c4ab643cb0d316ac740350d65ae1a1a7ba8f767aa9c80a22af4b2f3</citedby><cites>FETCH-LOGICAL-c4504-dabc3137f1c4ab643cb0d316ac740350d65ae1a1a7ba8f767aa9c80a22af4b2f3</cites><orcidid>0000-0001-6754-2814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.201800814$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.201800814$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30811825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Aalbers, Friso S.</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Röllig, Robert</creatorcontrib><creatorcontrib>Fraaije, Marco W.</creatorcontrib><creatorcontrib>Kara, Selin</creatorcontrib><title>Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>With the aim of applying redox‐neutral cascade reactions in organic media, fusions of a type II flavin‐containing monooxygenase (FMO‐E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity. The resulting bifunctional enzyme retained the catalytic properties of both individual enzymes. The lyophilized cell‐free extract containing the bifunctional enzyme was applied for the convergent cascade reaction consisting of cyclobutanone and butane‐1,4‐diol in different microaqueous media with only 5 % (v/v) aqueous buffer without any addition of external cofactor. Methyl tert‐butyl ether and cyclopentyl methyl ether were found to be the best organic media for the synthesis of γ‐butyrolactone, resulting in about 27 % analytical yield.
The power of two: A monooxygenase (FMO‐E) and an alcohol dehydrogenase (HLADH) are fused for use in predominantly organic media. The enzyme orientation and expression vector influence the overall fusion enzyme activity. The fusion allows cascade reactions to be performed in unconventional media.</description><subject>4-Butyrolactone - chemical synthesis</subject><subject>Alcohol</subject><subject>Alcohol dehydrogenase</subject><subject>Alcohol Dehydrogenase - chemistry</subject><subject>Alcohol Dehydrogenase - genetics</subject><subject>Alcohol Dehydrogenase - isolation & purification</subject><subject>Alcohols</subject><subject>Animals</subject><subject>biocatalysis</subject><subject>Butane</subject><subject>Butyrolactone</subject><subject>Cascade chemical reactions</subject><subject>Catalysis</subject><subject>Convergence</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>domino reactions</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Flavin</subject><subject>Freeze Drying</subject><subject>fusion enzymes</subject><subject>Horses</subject><subject>Kinetics</subject><subject>Methyl Ethers - chemistry</subject><subject>Mixed Function Oxygenases - chemistry</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - isolation & purification</subject><subject>Monooxygenase</subject><subject>Multifunctional Enzymes - chemistry</subject><subject>Multifunctional Enzymes - genetics</subject><subject>Multifunctional Enzymes - isolation & purification</subject><subject>Protein Engineering</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - isolation & purification</subject><subject>Rhodococcus - enzymology</subject><subject>solvent effects</subject><subject>Solvents - chemistry</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9P2zAYBnBrYqJd4brjFInLLi2v_yROjiXAhkTVC5ytN45TjNK42A2QnfgO-4b7JDNqYdIunF7L-r2PLD-EfKUwowDsVFdWzxjQHCCn4hMZU8GLqcw4P9ifBWNyRL6EcA8ARcbpIRnxiGnO0jExpesejV-ZbpuUGDTWJs4ttsMvUyfVkCxc59zzEAEG8-fl97zV7s61ybm5G2rvdvfJZR-s65L5ZtPauGe7ZOlX2FmdLExt8Yh8brAN5ng_J-T28uKm_Dm9Xv64KufXUy1SENMaK80plw3VAqtMcF1BzWmGWgrgKdRZioYiRVlh3shMIhY6B2QMG1Gxhk_I913uxruH3oStWtugTdtiZ1wfFKO5BCaBFpGe_EfvXe-7-DrFWJZmkLKcRjXbKe1dCN40auPtGv2gKKjXAtRrAeq9gLjwbR_bV2tTv_O3H4-g2IEn25rhgzhVnl2V_8L_AlICkzA</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Huang, Lei</creator><creator>Aalbers, Friso S.</creator><creator>Tang, Wei</creator><creator>Röllig, Robert</creator><creator>Fraaije, Marco W.</creator><creator>Kara, Selin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6754-2814</orcidid></search><sort><creationdate>20190701</creationdate><title>Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media</title><author>Huang, Lei ; Aalbers, Friso S. ; Tang, Wei ; Röllig, Robert ; Fraaije, Marco W. ; Kara, Selin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4504-dabc3137f1c4ab643cb0d316ac740350d65ae1a1a7ba8f767aa9c80a22af4b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>4-Butyrolactone - chemical synthesis</topic><topic>Alcohol</topic><topic>Alcohol dehydrogenase</topic><topic>Alcohol Dehydrogenase - chemistry</topic><topic>Alcohol Dehydrogenase - genetics</topic><topic>Alcohol Dehydrogenase - isolation & purification</topic><topic>Alcohols</topic><topic>Animals</topic><topic>biocatalysis</topic><topic>Butane</topic><topic>Butyrolactone</topic><topic>Cascade chemical reactions</topic><topic>Catalysis</topic><topic>Convergence</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>domino reactions</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Flavin</topic><topic>Freeze Drying</topic><topic>fusion enzymes</topic><topic>Horses</topic><topic>Kinetics</topic><topic>Methyl Ethers - chemistry</topic><topic>Mixed Function Oxygenases - chemistry</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - isolation & purification</topic><topic>Monooxygenase</topic><topic>Multifunctional Enzymes - chemistry</topic><topic>Multifunctional Enzymes - genetics</topic><topic>Multifunctional Enzymes - isolation & purification</topic><topic>Protein Engineering</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - isolation & purification</topic><topic>Rhodococcus - enzymology</topic><topic>solvent effects</topic><topic>Solvents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Aalbers, Friso S.</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Röllig, Robert</creatorcontrib><creatorcontrib>Fraaije, Marco W.</creatorcontrib><creatorcontrib>Kara, Selin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lei</au><au>Aalbers, Friso S.</au><au>Tang, Wei</au><au>Röllig, Robert</au><au>Fraaije, Marco W.</au><au>Kara, Selin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>20</volume><issue>13</issue><spage>1653</spage><epage>1658</epage><pages>1653-1658</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>With the aim of applying redox‐neutral cascade reactions in organic media, fusions of a type II flavin‐containing monooxygenase (FMO‐E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity. The resulting bifunctional enzyme retained the catalytic properties of both individual enzymes. The lyophilized cell‐free extract containing the bifunctional enzyme was applied for the convergent cascade reaction consisting of cyclobutanone and butane‐1,4‐diol in different microaqueous media with only 5 % (v/v) aqueous buffer without any addition of external cofactor. Methyl tert‐butyl ether and cyclopentyl methyl ether were found to be the best organic media for the synthesis of γ‐butyrolactone, resulting in about 27 % analytical yield.
The power of two: A monooxygenase (FMO‐E) and an alcohol dehydrogenase (HLADH) are fused for use in predominantly organic media. The enzyme orientation and expression vector influence the overall fusion enzyme activity. The fusion allows cascade reactions to be performed in unconventional media.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30811825</pmid><doi>10.1002/cbic.201800814</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6754-2814</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2019-07, Vol.20 (13), p.1653-1658 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_proquest_miscellaneous_2187027019 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 4-Butyrolactone - chemical synthesis Alcohol Alcohol dehydrogenase Alcohol Dehydrogenase - chemistry Alcohol Dehydrogenase - genetics Alcohol Dehydrogenase - isolation & purification Alcohols Animals biocatalysis Butane Butyrolactone Cascade chemical reactions Catalysis Convergence Dehydrogenase Dehydrogenases domino reactions Enzymatic activity Enzyme activity Enzymes Escherichia coli - genetics Flavin Freeze Drying fusion enzymes Horses Kinetics Methyl Ethers - chemistry Mixed Function Oxygenases - chemistry Mixed Function Oxygenases - genetics Mixed Function Oxygenases - isolation & purification Monooxygenase Multifunctional Enzymes - chemistry Multifunctional Enzymes - genetics Multifunctional Enzymes - isolation & purification Protein Engineering Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - isolation & purification Rhodococcus - enzymology solvent effects Solvents - chemistry |
title | Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergent%20Cascade%20Catalyzed%20by%20Monooxygenase%E2%80%93Alcohol%20Dehydrogenase%20Fusion%20Applied%20in%20Organic%20Media&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Huang,%20Lei&rft.date=2019-07-01&rft.volume=20&rft.issue=13&rft.spage=1653&rft.epage=1658&rft.pages=1653-1658&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201800814&rft_dat=%3Cproquest_cross%3E2187027019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265605281&rft_id=info:pmid/30811825&rfr_iscdi=true |