Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase
Cutinases are enzymes known to degrade polyester‐type plastics. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119 (herein called Ta_cut), shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid (PLA). However, the PLA‐degra...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2019-06, Vol.286 (11), p.2087-2098 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2098 |
---|---|
container_issue | 11 |
container_start_page | 2087 |
container_title | The FEBS journal |
container_volume | 286 |
creator | Kitadokoro, Kengo Kakara, Mizuki Matsui, Shingo Osokoshi, Ryouhei Thumarat, Uschara Kawai, Fusako Kamitani, Shigeki |
description | Cutinases are enzymes known to degrade polyester‐type plastics. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119 (herein called Ta_cut), shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid (PLA). However, the PLA‐degrading mechanism of cutinases is still poorly understood. Here, we report the structure complexes of cutinase with ethyl lactate (EL), the constitutional unit. From this complex structure, the electron density maps clearly showed one lactate (LAC) and one EL occupying different positions in the active site cleft. The binding mode of EL is assumed to show a figure prior to reaction and LAC is an after‐reaction product. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition. The complex structures were compared with other documented complex structures of cutinases and with the structure of PETase from Ideonella sakaiensis. The amino acid residues involved in substrate interaction are highly conserved among these enzymes. Thus, mapping the precise interactions in the Ta_cut and EL complex will pave the way for understanding the plastic‐degrading mechanism of cutinases and suggest ways of creating more potent enzymes by structural protein engineering.
Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119, shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid. Here, we report the structure complexes of cutinase with ethyl lactate, the constitutional unit. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition. |
doi_str_mv | 10.1111/febs.14781 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187025606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187025606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3931-ac50c08790a4950058fced6d9e32619ea502e78d6b57cafb7f2deea9137ff0b03</originalsourceid><addsrcrecordid>eNp9kEtKBDEURYMo_icuQAqciNCaT1WlaqiNPxAcqOAsvEpeuiP1aZMU0jOX4BJci0txJZa2OnDgm7w7OFwuh5AdRg_ZcEcWq3DIUlmwJbLOZMpHaZ4Vy785vV8jGyE8UCqytCxXyZqgMmdS8HVibqLvdew91Ilrg5tMYxhC7JI4xaRv3WOPyayr5zXoCBHfn18MTjwY106SBvUUWheapLPJ7RR901XOOgNvr1BXkOg-uhYCbpEVC3XA7e-_Se7OTm_HF6Or6_PL8fHVSItSsBHojGpayJJCWmaUZoXVaHJTouA5KxEyylEWJq8yqcFW0nKDCCUT0lpaUbFJ9he9M98Nu0NUjQsa6xpa7PqgOCsk5VlO8wHd-4M-dL1vh3WKcyEkYzTnA3WwoLTvQvBo1cy7BvxcMao-3atP9-rL_QDvflf2VYPmF_2RPQBsATy5Guf_VKmz05ObRekHbvmR9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233711062</pqid></control><display><type>article</type><title>Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Kitadokoro, Kengo ; Kakara, Mizuki ; Matsui, Shingo ; Osokoshi, Ryouhei ; Thumarat, Uschara ; Kawai, Fusako ; Kamitani, Shigeki</creator><creatorcontrib>Kitadokoro, Kengo ; Kakara, Mizuki ; Matsui, Shingo ; Osokoshi, Ryouhei ; Thumarat, Uschara ; Kawai, Fusako ; Kamitani, Shigeki</creatorcontrib><description>Cutinases are enzymes known to degrade polyester‐type plastics. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119 (herein called Ta_cut), shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid (PLA). However, the PLA‐degrading mechanism of cutinases is still poorly understood. Here, we report the structure complexes of cutinase with ethyl lactate (EL), the constitutional unit. From this complex structure, the electron density maps clearly showed one lactate (LAC) and one EL occupying different positions in the active site cleft. The binding mode of EL is assumed to show a figure prior to reaction and LAC is an after‐reaction product. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition. The complex structures were compared with other documented complex structures of cutinases and with the structure of PETase from Ideonella sakaiensis. The amino acid residues involved in substrate interaction are highly conserved among these enzymes. Thus, mapping the precise interactions in the Ta_cut and EL complex will pave the way for understanding the plastic‐degrading mechanism of cutinases and suggest ways of creating more potent enzymes by structural protein engineering.
Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119, shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid. Here, we report the structure complexes of cutinase with ethyl lactate, the constitutional unit. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.14781</identifier><identifier>PMID: 30761732</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Actinobacteria - enzymology ; Amino Acid Sequence - genetics ; Amino acids ; Carboxylic Ester Hydrolases - chemistry ; Carboxylic Ester Hydrolases - genetics ; Catalytic Domain - genetics ; crystal structure ; Cutinase ; Degradation ; Electron density ; Enzymes ; Est119 ; Esterase ; Ethyl lactate ; Lactates - chemistry ; Lactic acid ; Mapping ; Plastics ; Plastics - chemistry ; Polyester resins ; Polyesters ; Polyesters - chemistry ; polyester‐degrading enzyme ; Polylactic acid ; Polymers ; Protein Conformation ; Protein Engineering ; Residues ; structural biology ; Substrate Specificity ; Substrates ; Thermobifida alba</subject><ispartof>The FEBS journal, 2019-06, Vol.286 (11), p.2087-2098</ispartof><rights>2019 Federation of European Biochemical Societies</rights><rights>2019 Federation of European Biochemical Societies.</rights><rights>Copyright © 2019 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3931-ac50c08790a4950058fced6d9e32619ea502e78d6b57cafb7f2deea9137ff0b03</citedby><cites>FETCH-LOGICAL-c3931-ac50c08790a4950058fced6d9e32619ea502e78d6b57cafb7f2deea9137ff0b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.14781$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.14781$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30761732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitadokoro, Kengo</creatorcontrib><creatorcontrib>Kakara, Mizuki</creatorcontrib><creatorcontrib>Matsui, Shingo</creatorcontrib><creatorcontrib>Osokoshi, Ryouhei</creatorcontrib><creatorcontrib>Thumarat, Uschara</creatorcontrib><creatorcontrib>Kawai, Fusako</creatorcontrib><creatorcontrib>Kamitani, Shigeki</creatorcontrib><title>Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Cutinases are enzymes known to degrade polyester‐type plastics. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119 (herein called Ta_cut), shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid (PLA). However, the PLA‐degrading mechanism of cutinases is still poorly understood. Here, we report the structure complexes of cutinase with ethyl lactate (EL), the constitutional unit. From this complex structure, the electron density maps clearly showed one lactate (LAC) and one EL occupying different positions in the active site cleft. The binding mode of EL is assumed to show a figure prior to reaction and LAC is an after‐reaction product. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition. The complex structures were compared with other documented complex structures of cutinases and with the structure of PETase from Ideonella sakaiensis. The amino acid residues involved in substrate interaction are highly conserved among these enzymes. Thus, mapping the precise interactions in the Ta_cut and EL complex will pave the way for understanding the plastic‐degrading mechanism of cutinases and suggest ways of creating more potent enzymes by structural protein engineering.
Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119, shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid. Here, we report the structure complexes of cutinase with ethyl lactate, the constitutional unit. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition.</description><subject>Actinobacteria - enzymology</subject><subject>Amino Acid Sequence - genetics</subject><subject>Amino acids</subject><subject>Carboxylic Ester Hydrolases - chemistry</subject><subject>Carboxylic Ester Hydrolases - genetics</subject><subject>Catalytic Domain - genetics</subject><subject>crystal structure</subject><subject>Cutinase</subject><subject>Degradation</subject><subject>Electron density</subject><subject>Enzymes</subject><subject>Est119</subject><subject>Esterase</subject><subject>Ethyl lactate</subject><subject>Lactates - chemistry</subject><subject>Lactic acid</subject><subject>Mapping</subject><subject>Plastics</subject><subject>Plastics - chemistry</subject><subject>Polyester resins</subject><subject>Polyesters</subject><subject>Polyesters - chemistry</subject><subject>polyester‐degrading enzyme</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Residues</subject><subject>structural biology</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Thermobifida alba</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtKBDEURYMo_icuQAqciNCaT1WlaqiNPxAcqOAsvEpeuiP1aZMU0jOX4BJci0txJZa2OnDgm7w7OFwuh5AdRg_ZcEcWq3DIUlmwJbLOZMpHaZ4Vy785vV8jGyE8UCqytCxXyZqgMmdS8HVibqLvdew91Ilrg5tMYxhC7JI4xaRv3WOPyayr5zXoCBHfn18MTjwY106SBvUUWheapLPJ7RR901XOOgNvr1BXkOg-uhYCbpEVC3XA7e-_Se7OTm_HF6Or6_PL8fHVSItSsBHojGpayJJCWmaUZoXVaHJTouA5KxEyylEWJq8yqcFW0nKDCCUT0lpaUbFJ9he9M98Nu0NUjQsa6xpa7PqgOCsk5VlO8wHd-4M-dL1vh3WKcyEkYzTnA3WwoLTvQvBo1cy7BvxcMao-3atP9-rL_QDvflf2VYPmF_2RPQBsATy5Guf_VKmz05ObRekHbvmR9g</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Kitadokoro, Kengo</creator><creator>Kakara, Mizuki</creator><creator>Matsui, Shingo</creator><creator>Osokoshi, Ryouhei</creator><creator>Thumarat, Uschara</creator><creator>Kawai, Fusako</creator><creator>Kamitani, Shigeki</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201906</creationdate><title>Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase</title><author>Kitadokoro, Kengo ; Kakara, Mizuki ; Matsui, Shingo ; Osokoshi, Ryouhei ; Thumarat, Uschara ; Kawai, Fusako ; Kamitani, Shigeki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3931-ac50c08790a4950058fced6d9e32619ea502e78d6b57cafb7f2deea9137ff0b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actinobacteria - enzymology</topic><topic>Amino Acid Sequence - genetics</topic><topic>Amino acids</topic><topic>Carboxylic Ester Hydrolases - chemistry</topic><topic>Carboxylic Ester Hydrolases - genetics</topic><topic>Catalytic Domain - genetics</topic><topic>crystal structure</topic><topic>Cutinase</topic><topic>Degradation</topic><topic>Electron density</topic><topic>Enzymes</topic><topic>Est119</topic><topic>Esterase</topic><topic>Ethyl lactate</topic><topic>Lactates - chemistry</topic><topic>Lactic acid</topic><topic>Mapping</topic><topic>Plastics</topic><topic>Plastics - chemistry</topic><topic>Polyester resins</topic><topic>Polyesters</topic><topic>Polyesters - chemistry</topic><topic>polyester‐degrading enzyme</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Residues</topic><topic>structural biology</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Thermobifida alba</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitadokoro, Kengo</creatorcontrib><creatorcontrib>Kakara, Mizuki</creatorcontrib><creatorcontrib>Matsui, Shingo</creatorcontrib><creatorcontrib>Osokoshi, Ryouhei</creatorcontrib><creatorcontrib>Thumarat, Uschara</creatorcontrib><creatorcontrib>Kawai, Fusako</creatorcontrib><creatorcontrib>Kamitani, Shigeki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitadokoro, Kengo</au><au>Kakara, Mizuki</au><au>Matsui, Shingo</au><au>Osokoshi, Ryouhei</au><au>Thumarat, Uschara</au><au>Kawai, Fusako</au><au>Kamitani, Shigeki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2019-06</date><risdate>2019</risdate><volume>286</volume><issue>11</issue><spage>2087</spage><epage>2098</epage><pages>2087-2098</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Cutinases are enzymes known to degrade polyester‐type plastics. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119 (herein called Ta_cut), shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid (PLA). However, the PLA‐degrading mechanism of cutinases is still poorly understood. Here, we report the structure complexes of cutinase with ethyl lactate (EL), the constitutional unit. From this complex structure, the electron density maps clearly showed one lactate (LAC) and one EL occupying different positions in the active site cleft. The binding mode of EL is assumed to show a figure prior to reaction and LAC is an after‐reaction product. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition. The complex structures were compared with other documented complex structures of cutinases and with the structure of PETase from Ideonella sakaiensis. The amino acid residues involved in substrate interaction are highly conserved among these enzymes. Thus, mapping the precise interactions in the Ta_cut and EL complex will pave the way for understanding the plastic‐degrading mechanism of cutinases and suggest ways of creating more potent enzymes by structural protein engineering.
Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119, shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid. Here, we report the structure complexes of cutinase with ethyl lactate, the constitutional unit. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30761732</pmid><doi>10.1111/febs.14781</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2019-06, Vol.286 (11), p.2087-2098 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_2187025606 |
source | MEDLINE; Wiley Online Library Journals; Full-Text Journals in Chemistry (Open access) |
subjects | Actinobacteria - enzymology Amino Acid Sequence - genetics Amino acids Carboxylic Ester Hydrolases - chemistry Carboxylic Ester Hydrolases - genetics Catalytic Domain - genetics crystal structure Cutinase Degradation Electron density Enzymes Est119 Esterase Ethyl lactate Lactates - chemistry Lactic acid Mapping Plastics Plastics - chemistry Polyester resins Polyesters Polyesters - chemistry polyester‐degrading enzyme Polylactic acid Polymers Protein Conformation Protein Engineering Residues structural biology Substrate Specificity Substrates Thermobifida alba |
title | Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insights%20into%20the%20unique%20polylactate%E2%80%90degrading%20mechanism%20of%20Thermobifida%C2%A0alba%20cutinase&rft.jtitle=The%20FEBS%20journal&rft.au=Kitadokoro,%20Kengo&rft.date=2019-06&rft.volume=286&rft.issue=11&rft.spage=2087&rft.epage=2098&rft.pages=2087-2098&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.14781&rft_dat=%3Cproquest_cross%3E2187025606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233711062&rft_id=info:pmid/30761732&rfr_iscdi=true |