Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase

Cutinases are enzymes known to degrade polyester‐type plastics. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119 (herein called Ta_cut), shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid (PLA). However, the PLA‐degra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2019-06, Vol.286 (11), p.2087-2098
Hauptverfasser: Kitadokoro, Kengo, Kakara, Mizuki, Matsui, Shingo, Osokoshi, Ryouhei, Thumarat, Uschara, Kawai, Fusako, Kamitani, Shigeki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2098
container_issue 11
container_start_page 2087
container_title The FEBS journal
container_volume 286
creator Kitadokoro, Kengo
Kakara, Mizuki
Matsui, Shingo
Osokoshi, Ryouhei
Thumarat, Uschara
Kawai, Fusako
Kamitani, Shigeki
description Cutinases are enzymes known to degrade polyester‐type plastics. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119 (herein called Ta_cut), shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid (PLA). However, the PLA‐degrading mechanism of cutinases is still poorly understood. Here, we report the structure complexes of cutinase with ethyl lactate (EL), the constitutional unit. From this complex structure, the electron density maps clearly showed one lactate (LAC) and one EL occupying different positions in the active site cleft. The binding mode of EL is assumed to show a figure prior to reaction and LAC is an after‐reaction product. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition. The complex structures were compared with other documented complex structures of cutinases and with the structure of PETase from Ideonella sakaiensis. The amino acid residues involved in substrate interaction are highly conserved among these enzymes. Thus, mapping the precise interactions in the Ta_cut and EL complex will pave the way for understanding the plastic‐degrading mechanism of cutinases and suggest ways of creating more potent enzymes by structural protein engineering. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119, shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid. Here, we report the structure complexes of cutinase with ethyl lactate, the constitutional unit. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition.
doi_str_mv 10.1111/febs.14781
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187025606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187025606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3931-ac50c08790a4950058fced6d9e32619ea502e78d6b57cafb7f2deea9137ff0b03</originalsourceid><addsrcrecordid>eNp9kEtKBDEURYMo_icuQAqciNCaT1WlaqiNPxAcqOAsvEpeuiP1aZMU0jOX4BJci0txJZa2OnDgm7w7OFwuh5AdRg_ZcEcWq3DIUlmwJbLOZMpHaZ4Vy785vV8jGyE8UCqytCxXyZqgMmdS8HVibqLvdew91Ilrg5tMYxhC7JI4xaRv3WOPyayr5zXoCBHfn18MTjwY106SBvUUWheapLPJ7RR901XOOgNvr1BXkOg-uhYCbpEVC3XA7e-_Se7OTm_HF6Or6_PL8fHVSItSsBHojGpayJJCWmaUZoXVaHJTouA5KxEyylEWJq8yqcFW0nKDCCUT0lpaUbFJ9he9M98Nu0NUjQsa6xpa7PqgOCsk5VlO8wHd-4M-dL1vh3WKcyEkYzTnA3WwoLTvQvBo1cy7BvxcMao-3atP9-rL_QDvflf2VYPmF_2RPQBsATy5Guf_VKmz05ObRekHbvmR9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233711062</pqid></control><display><type>article</type><title>Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Kitadokoro, Kengo ; Kakara, Mizuki ; Matsui, Shingo ; Osokoshi, Ryouhei ; Thumarat, Uschara ; Kawai, Fusako ; Kamitani, Shigeki</creator><creatorcontrib>Kitadokoro, Kengo ; Kakara, Mizuki ; Matsui, Shingo ; Osokoshi, Ryouhei ; Thumarat, Uschara ; Kawai, Fusako ; Kamitani, Shigeki</creatorcontrib><description>Cutinases are enzymes known to degrade polyester‐type plastics. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119 (herein called Ta_cut), shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid (PLA). However, the PLA‐degrading mechanism of cutinases is still poorly understood. Here, we report the structure complexes of cutinase with ethyl lactate (EL), the constitutional unit. From this complex structure, the electron density maps clearly showed one lactate (LAC) and one EL occupying different positions in the active site cleft. The binding mode of EL is assumed to show a figure prior to reaction and LAC is an after‐reaction product. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition. The complex structures were compared with other documented complex structures of cutinases and with the structure of PETase from Ideonella sakaiensis. The amino acid residues involved in substrate interaction are highly conserved among these enzymes. Thus, mapping the precise interactions in the Ta_cut and EL complex will pave the way for understanding the plastic‐degrading mechanism of cutinases and suggest ways of creating more potent enzymes by structural protein engineering. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119, shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid. Here, we report the structure complexes of cutinase with ethyl lactate, the constitutional unit. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.14781</identifier><identifier>PMID: 30761732</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Actinobacteria - enzymology ; Amino Acid Sequence - genetics ; Amino acids ; Carboxylic Ester Hydrolases - chemistry ; Carboxylic Ester Hydrolases - genetics ; Catalytic Domain - genetics ; crystal structure ; Cutinase ; Degradation ; Electron density ; Enzymes ; Est119 ; Esterase ; Ethyl lactate ; Lactates - chemistry ; Lactic acid ; Mapping ; Plastics ; Plastics - chemistry ; Polyester resins ; Polyesters ; Polyesters - chemistry ; polyester‐degrading enzyme ; Polylactic acid ; Polymers ; Protein Conformation ; Protein Engineering ; Residues ; structural biology ; Substrate Specificity ; Substrates ; Thermobifida alba</subject><ispartof>The FEBS journal, 2019-06, Vol.286 (11), p.2087-2098</ispartof><rights>2019 Federation of European Biochemical Societies</rights><rights>2019 Federation of European Biochemical Societies.</rights><rights>Copyright © 2019 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3931-ac50c08790a4950058fced6d9e32619ea502e78d6b57cafb7f2deea9137ff0b03</citedby><cites>FETCH-LOGICAL-c3931-ac50c08790a4950058fced6d9e32619ea502e78d6b57cafb7f2deea9137ff0b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.14781$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.14781$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30761732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitadokoro, Kengo</creatorcontrib><creatorcontrib>Kakara, Mizuki</creatorcontrib><creatorcontrib>Matsui, Shingo</creatorcontrib><creatorcontrib>Osokoshi, Ryouhei</creatorcontrib><creatorcontrib>Thumarat, Uschara</creatorcontrib><creatorcontrib>Kawai, Fusako</creatorcontrib><creatorcontrib>Kamitani, Shigeki</creatorcontrib><title>Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Cutinases are enzymes known to degrade polyester‐type plastics. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119 (herein called Ta_cut), shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid (PLA). However, the PLA‐degrading mechanism of cutinases is still poorly understood. Here, we report the structure complexes of cutinase with ethyl lactate (EL), the constitutional unit. From this complex structure, the electron density maps clearly showed one lactate (LAC) and one EL occupying different positions in the active site cleft. The binding mode of EL is assumed to show a figure prior to reaction and LAC is an after‐reaction product. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition. The complex structures were compared with other documented complex structures of cutinases and with the structure of PETase from Ideonella sakaiensis. The amino acid residues involved in substrate interaction are highly conserved among these enzymes. Thus, mapping the precise interactions in the Ta_cut and EL complex will pave the way for understanding the plastic‐degrading mechanism of cutinases and suggest ways of creating more potent enzymes by structural protein engineering. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119, shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid. Here, we report the structure complexes of cutinase with ethyl lactate, the constitutional unit. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition.</description><subject>Actinobacteria - enzymology</subject><subject>Amino Acid Sequence - genetics</subject><subject>Amino acids</subject><subject>Carboxylic Ester Hydrolases - chemistry</subject><subject>Carboxylic Ester Hydrolases - genetics</subject><subject>Catalytic Domain - genetics</subject><subject>crystal structure</subject><subject>Cutinase</subject><subject>Degradation</subject><subject>Electron density</subject><subject>Enzymes</subject><subject>Est119</subject><subject>Esterase</subject><subject>Ethyl lactate</subject><subject>Lactates - chemistry</subject><subject>Lactic acid</subject><subject>Mapping</subject><subject>Plastics</subject><subject>Plastics - chemistry</subject><subject>Polyester resins</subject><subject>Polyesters</subject><subject>Polyesters - chemistry</subject><subject>polyester‐degrading enzyme</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Residues</subject><subject>structural biology</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Thermobifida alba</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtKBDEURYMo_icuQAqciNCaT1WlaqiNPxAcqOAsvEpeuiP1aZMU0jOX4BJci0txJZa2OnDgm7w7OFwuh5AdRg_ZcEcWq3DIUlmwJbLOZMpHaZ4Vy785vV8jGyE8UCqytCxXyZqgMmdS8HVibqLvdew91Ilrg5tMYxhC7JI4xaRv3WOPyayr5zXoCBHfn18MTjwY106SBvUUWheapLPJ7RR901XOOgNvr1BXkOg-uhYCbpEVC3XA7e-_Se7OTm_HF6Or6_PL8fHVSItSsBHojGpayJJCWmaUZoXVaHJTouA5KxEyylEWJq8yqcFW0nKDCCUT0lpaUbFJ9he9M98Nu0NUjQsa6xpa7PqgOCsk5VlO8wHd-4M-dL1vh3WKcyEkYzTnA3WwoLTvQvBo1cy7BvxcMao-3atP9-rL_QDvflf2VYPmF_2RPQBsATy5Guf_VKmz05ObRekHbvmR9g</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Kitadokoro, Kengo</creator><creator>Kakara, Mizuki</creator><creator>Matsui, Shingo</creator><creator>Osokoshi, Ryouhei</creator><creator>Thumarat, Uschara</creator><creator>Kawai, Fusako</creator><creator>Kamitani, Shigeki</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201906</creationdate><title>Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase</title><author>Kitadokoro, Kengo ; Kakara, Mizuki ; Matsui, Shingo ; Osokoshi, Ryouhei ; Thumarat, Uschara ; Kawai, Fusako ; Kamitani, Shigeki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3931-ac50c08790a4950058fced6d9e32619ea502e78d6b57cafb7f2deea9137ff0b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actinobacteria - enzymology</topic><topic>Amino Acid Sequence - genetics</topic><topic>Amino acids</topic><topic>Carboxylic Ester Hydrolases - chemistry</topic><topic>Carboxylic Ester Hydrolases - genetics</topic><topic>Catalytic Domain - genetics</topic><topic>crystal structure</topic><topic>Cutinase</topic><topic>Degradation</topic><topic>Electron density</topic><topic>Enzymes</topic><topic>Est119</topic><topic>Esterase</topic><topic>Ethyl lactate</topic><topic>Lactates - chemistry</topic><topic>Lactic acid</topic><topic>Mapping</topic><topic>Plastics</topic><topic>Plastics - chemistry</topic><topic>Polyester resins</topic><topic>Polyesters</topic><topic>Polyesters - chemistry</topic><topic>polyester‐degrading enzyme</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Residues</topic><topic>structural biology</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Thermobifida alba</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitadokoro, Kengo</creatorcontrib><creatorcontrib>Kakara, Mizuki</creatorcontrib><creatorcontrib>Matsui, Shingo</creatorcontrib><creatorcontrib>Osokoshi, Ryouhei</creatorcontrib><creatorcontrib>Thumarat, Uschara</creatorcontrib><creatorcontrib>Kawai, Fusako</creatorcontrib><creatorcontrib>Kamitani, Shigeki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitadokoro, Kengo</au><au>Kakara, Mizuki</au><au>Matsui, Shingo</au><au>Osokoshi, Ryouhei</au><au>Thumarat, Uschara</au><au>Kawai, Fusako</au><au>Kamitani, Shigeki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2019-06</date><risdate>2019</risdate><volume>286</volume><issue>11</issue><spage>2087</spage><epage>2098</epage><pages>2087-2098</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Cutinases are enzymes known to degrade polyester‐type plastics. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119 (herein called Ta_cut), shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid (PLA). However, the PLA‐degrading mechanism of cutinases is still poorly understood. Here, we report the structure complexes of cutinase with ethyl lactate (EL), the constitutional unit. From this complex structure, the electron density maps clearly showed one lactate (LAC) and one EL occupying different positions in the active site cleft. The binding mode of EL is assumed to show a figure prior to reaction and LAC is an after‐reaction product. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition. The complex structures were compared with other documented complex structures of cutinases and with the structure of PETase from Ideonella sakaiensis. The amino acid residues involved in substrate interaction are highly conserved among these enzymes. Thus, mapping the precise interactions in the Ta_cut and EL complex will pave the way for understanding the plastic‐degrading mechanism of cutinases and suggest ways of creating more potent enzymes by structural protein engineering. Est119, a plastic‐degrading type of cutinase from Thermobifida alba AHK119, shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid. Here, we report the structure complexes of cutinase with ethyl lactate, the constitutional unit. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30761732</pmid><doi>10.1111/febs.14781</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2019-06, Vol.286 (11), p.2087-2098
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_2187025606
source MEDLINE; Wiley Online Library Journals; Full-Text Journals in Chemistry (Open access)
subjects Actinobacteria - enzymology
Amino Acid Sequence - genetics
Amino acids
Carboxylic Ester Hydrolases - chemistry
Carboxylic Ester Hydrolases - genetics
Catalytic Domain - genetics
crystal structure
Cutinase
Degradation
Electron density
Enzymes
Est119
Esterase
Ethyl lactate
Lactates - chemistry
Lactic acid
Mapping
Plastics
Plastics - chemistry
Polyester resins
Polyesters
Polyesters - chemistry
polyester‐degrading enzyme
Polylactic acid
Polymers
Protein Conformation
Protein Engineering
Residues
structural biology
Substrate Specificity
Substrates
Thermobifida alba
title Structural insights into the unique polylactate‐degrading mechanism of Thermobifida alba cutinase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insights%20into%20the%20unique%20polylactate%E2%80%90degrading%20mechanism%20of%20Thermobifida%C2%A0alba%20cutinase&rft.jtitle=The%20FEBS%20journal&rft.au=Kitadokoro,%20Kengo&rft.date=2019-06&rft.volume=286&rft.issue=11&rft.spage=2087&rft.epage=2098&rft.pages=2087-2098&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.14781&rft_dat=%3Cproquest_cross%3E2187025606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233711062&rft_id=info:pmid/30761732&rfr_iscdi=true