Nano/Microstructured Silicon–Graphite Composite Anode for High-Energy-Density Li-Ion Battery

With the ever-increasing demand for lithium-ion batteries (LIBs) with higher energy density, tremendous attention has been paid to design various silicon-active materials as alternative electrodes due to their high theoretical capacity (ca. 3579 mAh g–1). However, totally replacing the commercially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-02, Vol.13 (2), p.2624-2633, Article acsnano.9b00169
Hauptverfasser: Li, Peng, Hwang, Jang-Yeon, Sun, Yang-Kook
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2633
container_issue 2
container_start_page 2624
container_title ACS nano
container_volume 13
creator Li, Peng
Hwang, Jang-Yeon
Sun, Yang-Kook
description With the ever-increasing demand for lithium-ion batteries (LIBs) with higher energy density, tremendous attention has been paid to design various silicon-active materials as alternative electrodes due to their high theoretical capacity (ca. 3579 mAh g–1). However, totally replacing the commercially utilized graphite with silicon is still insurmountable owing to bottlenecks such as low electrode loading and insufficient areal capacity. Thus, in this study, we turn back to enhanced graphite electrode through the cooperation of modified silicon via a facile and scalable blending process. The modified nano/microstructured silicon with boron doping and carbon nanotube wedging (B–Si/CNT) can provide improved stability (88.2% retention after 200 cycles at 2000 mA g–1) and high reversible capacity (∼2426 mAh g–1), whereas the graphite can act as a tough framework for high loading. Owing to the synergistic effect, the resultant B–Si/CNT–graphite composite (B–Si/CNT@G) shows a high areal capacity of 5.2 mAh cm–2 and excellent cycle retention of 83.4% over 100 cycles, even with ultrahigh active mass loading of 11.2 mg cm–2,which could significantly surpass the commercially used graphite electrode. Notably, the composite also exhibits impressive application in Li-ion full battery using 2 mol % Al-doped full-concentration-gradient Li­[Ni0.76Co0.09Mn0.15]­O2 (Al2-FCG76) as the cathode with excellent capacity retention of 82.5% even after 300 cycles and an outstanding energy density (8.0 mWh cm–2) based on the large mass loading of the cathode (12.0 mg cm–2).
doi_str_mv 10.1021/acsnano.9b00169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187025541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187025541</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-656868a97e16600718c9cd1de1fa104ab7a08f1d90163b61314cab41572b1dd63</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EolCY2VBGJJTWL06cZCyltJUKDIDEhOUkTusqsYOdDNn4D_xDfgmpGroxvZPedyfdIXQFeATYgzFPreJKj-IEY6DxETqDmFAXR_T9-KADGKBza7cYB2EU0lM0IDgMYuLDGfp46uzjR5kabWvTpHVjROa8yEKmWv18fc8NrzayFs5Ul5W2OzVROhNOro2zkOuNO1PCrFv3Xqju2zor6S61cu54XQvTXqCTnBdWXPZ3iN4eZq_Thbt6ni-nk5XLCSG1SwMa0YjHoQBKMQ4hSuM0g0xAzgH7PAk5jnLI4q4kSSgQ8FOe-BCEXgJZRskQ3exzK6M_G2FrVkqbiqLgSujGMg-iEHtB4EOHjvforrI1ImeVkSU3LQPMdqOyflTWj9o5rvvwJilFduD_VuyA2z3QOdlWN0Z1Xf-N-wV3Q4N0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187025541</pqid></control><display><type>article</type><title>Nano/Microstructured Silicon–Graphite Composite Anode for High-Energy-Density Li-Ion Battery</title><source>ACS Publications</source><creator>Li, Peng ; Hwang, Jang-Yeon ; Sun, Yang-Kook</creator><creatorcontrib>Li, Peng ; Hwang, Jang-Yeon ; Sun, Yang-Kook</creatorcontrib><description>With the ever-increasing demand for lithium-ion batteries (LIBs) with higher energy density, tremendous attention has been paid to design various silicon-active materials as alternative electrodes due to their high theoretical capacity (ca. 3579 mAh g–1). However, totally replacing the commercially utilized graphite with silicon is still insurmountable owing to bottlenecks such as low electrode loading and insufficient areal capacity. Thus, in this study, we turn back to enhanced graphite electrode through the cooperation of modified silicon via a facile and scalable blending process. The modified nano/microstructured silicon with boron doping and carbon nanotube wedging (B–Si/CNT) can provide improved stability (88.2% retention after 200 cycles at 2000 mA g–1) and high reversible capacity (∼2426 mAh g–1), whereas the graphite can act as a tough framework for high loading. Owing to the synergistic effect, the resultant B–Si/CNT–graphite composite (B–Si/CNT@G) shows a high areal capacity of 5.2 mAh cm–2 and excellent cycle retention of 83.4% over 100 cycles, even with ultrahigh active mass loading of 11.2 mg cm–2,which could significantly surpass the commercially used graphite electrode. Notably, the composite also exhibits impressive application in Li-ion full battery using 2 mol % Al-doped full-concentration-gradient Li­[Ni0.76Co0.09Mn0.15]­O2 (Al2-FCG76) as the cathode with excellent capacity retention of 82.5% even after 300 cycles and an outstanding energy density (8.0 mWh cm–2) based on the large mass loading of the cathode (12.0 mg cm–2).</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b00169</identifier><identifier>PMID: 30759341</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2019-02, Vol.13 (2), p.2624-2633, Article acsnano.9b00169</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-656868a97e16600718c9cd1de1fa104ab7a08f1d90163b61314cab41572b1dd63</citedby><cites>FETCH-LOGICAL-a333t-656868a97e16600718c9cd1de1fa104ab7a08f1d90163b61314cab41572b1dd63</cites><orcidid>0000-0002-0117-0170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b00169$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b00169$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30759341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Hwang, Jang-Yeon</creatorcontrib><creatorcontrib>Sun, Yang-Kook</creatorcontrib><title>Nano/Microstructured Silicon–Graphite Composite Anode for High-Energy-Density Li-Ion Battery</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>With the ever-increasing demand for lithium-ion batteries (LIBs) with higher energy density, tremendous attention has been paid to design various silicon-active materials as alternative electrodes due to their high theoretical capacity (ca. 3579 mAh g–1). However, totally replacing the commercially utilized graphite with silicon is still insurmountable owing to bottlenecks such as low electrode loading and insufficient areal capacity. Thus, in this study, we turn back to enhanced graphite electrode through the cooperation of modified silicon via a facile and scalable blending process. The modified nano/microstructured silicon with boron doping and carbon nanotube wedging (B–Si/CNT) can provide improved stability (88.2% retention after 200 cycles at 2000 mA g–1) and high reversible capacity (∼2426 mAh g–1), whereas the graphite can act as a tough framework for high loading. Owing to the synergistic effect, the resultant B–Si/CNT–graphite composite (B–Si/CNT@G) shows a high areal capacity of 5.2 mAh cm–2 and excellent cycle retention of 83.4% over 100 cycles, even with ultrahigh active mass loading of 11.2 mg cm–2,which could significantly surpass the commercially used graphite electrode. Notably, the composite also exhibits impressive application in Li-ion full battery using 2 mol % Al-doped full-concentration-gradient Li­[Ni0.76Co0.09Mn0.15]­O2 (Al2-FCG76) as the cathode with excellent capacity retention of 82.5% even after 300 cycles and an outstanding energy density (8.0 mWh cm–2) based on the large mass loading of the cathode (12.0 mg cm–2).</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EolCY2VBGJJTWL06cZCyltJUKDIDEhOUkTusqsYOdDNn4D_xDfgmpGroxvZPedyfdIXQFeATYgzFPreJKj-IEY6DxETqDmFAXR_T9-KADGKBza7cYB2EU0lM0IDgMYuLDGfp46uzjR5kabWvTpHVjROa8yEKmWv18fc8NrzayFs5Ul5W2OzVROhNOro2zkOuNO1PCrFv3Xqju2zor6S61cu54XQvTXqCTnBdWXPZ3iN4eZq_Thbt6ni-nk5XLCSG1SwMa0YjHoQBKMQ4hSuM0g0xAzgH7PAk5jnLI4q4kSSgQ8FOe-BCEXgJZRskQ3exzK6M_G2FrVkqbiqLgSujGMg-iEHtB4EOHjvforrI1ImeVkSU3LQPMdqOyflTWj9o5rvvwJilFduD_VuyA2z3QOdlWN0Z1Xf-N-wV3Q4N0</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Li, Peng</creator><creator>Hwang, Jang-Yeon</creator><creator>Sun, Yang-Kook</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0117-0170</orcidid></search><sort><creationdate>20190226</creationdate><title>Nano/Microstructured Silicon–Graphite Composite Anode for High-Energy-Density Li-Ion Battery</title><author>Li, Peng ; Hwang, Jang-Yeon ; Sun, Yang-Kook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-656868a97e16600718c9cd1de1fa104ab7a08f1d90163b61314cab41572b1dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Hwang, Jang-Yeon</creatorcontrib><creatorcontrib>Sun, Yang-Kook</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Peng</au><au>Hwang, Jang-Yeon</au><au>Sun, Yang-Kook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano/Microstructured Silicon–Graphite Composite Anode for High-Energy-Density Li-Ion Battery</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>2624</spage><epage>2633</epage><pages>2624-2633</pages><artnum>acsnano.9b00169</artnum><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>With the ever-increasing demand for lithium-ion batteries (LIBs) with higher energy density, tremendous attention has been paid to design various silicon-active materials as alternative electrodes due to their high theoretical capacity (ca. 3579 mAh g–1). However, totally replacing the commercially utilized graphite with silicon is still insurmountable owing to bottlenecks such as low electrode loading and insufficient areal capacity. Thus, in this study, we turn back to enhanced graphite electrode through the cooperation of modified silicon via a facile and scalable blending process. The modified nano/microstructured silicon with boron doping and carbon nanotube wedging (B–Si/CNT) can provide improved stability (88.2% retention after 200 cycles at 2000 mA g–1) and high reversible capacity (∼2426 mAh g–1), whereas the graphite can act as a tough framework for high loading. Owing to the synergistic effect, the resultant B–Si/CNT–graphite composite (B–Si/CNT@G) shows a high areal capacity of 5.2 mAh cm–2 and excellent cycle retention of 83.4% over 100 cycles, even with ultrahigh active mass loading of 11.2 mg cm–2,which could significantly surpass the commercially used graphite electrode. Notably, the composite also exhibits impressive application in Li-ion full battery using 2 mol % Al-doped full-concentration-gradient Li­[Ni0.76Co0.09Mn0.15]­O2 (Al2-FCG76) as the cathode with excellent capacity retention of 82.5% even after 300 cycles and an outstanding energy density (8.0 mWh cm–2) based on the large mass loading of the cathode (12.0 mg cm–2).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30759341</pmid><doi>10.1021/acsnano.9b00169</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0117-0170</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2019-02, Vol.13 (2), p.2624-2633, Article acsnano.9b00169
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2187025541
source ACS Publications
title Nano/Microstructured Silicon–Graphite Composite Anode for High-Energy-Density Li-Ion Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano/Microstructured%20Silicon%E2%80%93Graphite%20Composite%20Anode%20for%20High-Energy-Density%20Li-Ion%20Battery&rft.jtitle=ACS%20nano&rft.au=Li,%20Peng&rft.date=2019-02-26&rft.volume=13&rft.issue=2&rft.spage=2624&rft.epage=2633&rft.pages=2624-2633&rft.artnum=acsnano.9b00169&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b00169&rft_dat=%3Cproquest_cross%3E2187025541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187025541&rft_id=info:pmid/30759341&rfr_iscdi=true