Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury

Metal nanozyme has attracted wide interest for biomedicine, and a highly catalytic material in the physiological environment is highly desired. However, catalytic selectivity of nanozyme is still highly challenging, limiting its wide application. Here, we show a trimetallic (triM) nanozyme with high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-02, Vol.13 (2), p.1870-1884, Article acsnano.8b08045
Hauptverfasser: Mu, Xiaoyu, Wang, Junying, Li, Yonghui, Xu, Fujuan, Long, Wei, Ouyang, Lufei, Liu, Haile, Jing, Yaqi, Wang, Jingya, Dai, Haitao, Liu, Qiang, Sun, Yuanming, Liu, Changlong, Zhang, Xiao-Dong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1884
container_issue 2
container_start_page 1870
container_title ACS nano
container_volume 13
creator Mu, Xiaoyu
Wang, Junying
Li, Yonghui
Xu, Fujuan
Long, Wei
Ouyang, Lufei
Liu, Haile
Jing, Yaqi
Wang, Jingya
Dai, Haitao
Liu, Qiang
Sun, Yuanming
Liu, Changlong
Zhang, Xiao-Dong
description Metal nanozyme has attracted wide interest for biomedicine, and a highly catalytic material in the physiological environment is highly desired. However, catalytic selectivity of nanozyme is still highly challenging, limiting its wide application. Here, we show a trimetallic (triM) nanozyme with highly catalytic activity and environmental selectivity. Enzyme-mimicked investigations find that the triM system possesses multi-enzyme-mimetic activity for removing reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as 1O2, H2O2, •OH, and •NO. Importantly, triM nanozyme exhibits the significant neutral environment preference for removing the •OH, 1O2, and •NO free radical, indicating its highly catalytic selectivity. The density functional theory (DFT) calculations reveal that triM nanozyme can capture electrons very easily and provides more attraction to reactive oxygen and nitrogen species (RONS) radicals in the neutral environment. In vitro experiments show that triM nanozyme can improve the viability of injured neural cell. In the LPS-induced brain injury model, the superoxide dismutase (SOD) activity and lipid peroxidation can be greatly recovered after triM nanozyme treatment. Moreover, the triM nanozyme treatment can significantly improve the survival rate, neuroinflammation, and reference memory of injured mice. Present work provides a feasible route for improving selectivity of nanozyme in the physiological environment as well as exploring potential applications in brain science.
doi_str_mv 10.1021/acsnano.8b08045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187025463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187025463</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-5123f53526ce5f68e485c7dfe25ba922276f435d583e65b71eac4bcedc6ea23</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUwsyGPSCitP2InHaEqUKlqEXRgsxznIlIldrEToPx6glq6Md0Nz_vo7kXokpIhJYyOtAlWWzdMM5KSWByhPh1zGZFUvh4fdkF76CyENSEiSRN5inqcJIITSfto-Qy5-8IrX9bQ6KoqDV50wu9tDfizbN7wAtrG6wpP7Ufpna3BNvjJQwEerAFcOI_vvC4tntl167fn6KTQVYCL_Rygl_vpavIYzZcPs8ntPNKc8yYSlPFCcMGkAVHIFOJUmCQvgIlMjxljiSxiLnKRcpAiSyhoE2cGciNBMz5A1zvrxrv3FkKj6jIYqCptwbVBMZomhIlY8g4d7VDjXQjd4WrT_ar9VlGifjtU-w7VvsMucbWXt1kN-YH_K60DbnZAl1Rr13rbffqv7gepLX3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187025463</pqid></control><display><type>article</type><title>Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury</title><source>American Chemical Society</source><creator>Mu, Xiaoyu ; Wang, Junying ; Li, Yonghui ; Xu, Fujuan ; Long, Wei ; Ouyang, Lufei ; Liu, Haile ; Jing, Yaqi ; Wang, Jingya ; Dai, Haitao ; Liu, Qiang ; Sun, Yuanming ; Liu, Changlong ; Zhang, Xiao-Dong</creator><creatorcontrib>Mu, Xiaoyu ; Wang, Junying ; Li, Yonghui ; Xu, Fujuan ; Long, Wei ; Ouyang, Lufei ; Liu, Haile ; Jing, Yaqi ; Wang, Jingya ; Dai, Haitao ; Liu, Qiang ; Sun, Yuanming ; Liu, Changlong ; Zhang, Xiao-Dong</creatorcontrib><description>Metal nanozyme has attracted wide interest for biomedicine, and a highly catalytic material in the physiological environment is highly desired. However, catalytic selectivity of nanozyme is still highly challenging, limiting its wide application. Here, we show a trimetallic (triM) nanozyme with highly catalytic activity and environmental selectivity. Enzyme-mimicked investigations find that the triM system possesses multi-enzyme-mimetic activity for removing reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as 1O2, H2O2, •OH, and •NO. Importantly, triM nanozyme exhibits the significant neutral environment preference for removing the •OH, 1O2, and •NO free radical, indicating its highly catalytic selectivity. The density functional theory (DFT) calculations reveal that triM nanozyme can capture electrons very easily and provides more attraction to reactive oxygen and nitrogen species (RONS) radicals in the neutral environment. In vitro experiments show that triM nanozyme can improve the viability of injured neural cell. In the LPS-induced brain injury model, the superoxide dismutase (SOD) activity and lipid peroxidation can be greatly recovered after triM nanozyme treatment. Moreover, the triM nanozyme treatment can significantly improve the survival rate, neuroinflammation, and reference memory of injured mice. Present work provides a feasible route for improving selectivity of nanozyme in the physiological environment as well as exploring potential applications in brain science.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b08045</identifier><identifier>PMID: 30753061</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2019-02, Vol.13 (2), p.1870-1884, Article acsnano.8b08045</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-5123f53526ce5f68e485c7dfe25ba922276f435d583e65b71eac4bcedc6ea23</citedby><cites>FETCH-LOGICAL-a333t-5123f53526ce5f68e485c7dfe25ba922276f435d583e65b71eac4bcedc6ea23</cites><orcidid>0000-0002-7212-0138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b08045$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b08045$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30753061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mu, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Junying</creatorcontrib><creatorcontrib>Li, Yonghui</creatorcontrib><creatorcontrib>Xu, Fujuan</creatorcontrib><creatorcontrib>Long, Wei</creatorcontrib><creatorcontrib>Ouyang, Lufei</creatorcontrib><creatorcontrib>Liu, Haile</creatorcontrib><creatorcontrib>Jing, Yaqi</creatorcontrib><creatorcontrib>Wang, Jingya</creatorcontrib><creatorcontrib>Dai, Haitao</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Sun, Yuanming</creatorcontrib><creatorcontrib>Liu, Changlong</creatorcontrib><creatorcontrib>Zhang, Xiao-Dong</creatorcontrib><title>Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Metal nanozyme has attracted wide interest for biomedicine, and a highly catalytic material in the physiological environment is highly desired. However, catalytic selectivity of nanozyme is still highly challenging, limiting its wide application. Here, we show a trimetallic (triM) nanozyme with highly catalytic activity and environmental selectivity. Enzyme-mimicked investigations find that the triM system possesses multi-enzyme-mimetic activity for removing reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as 1O2, H2O2, •OH, and •NO. Importantly, triM nanozyme exhibits the significant neutral environment preference for removing the •OH, 1O2, and •NO free radical, indicating its highly catalytic selectivity. The density functional theory (DFT) calculations reveal that triM nanozyme can capture electrons very easily and provides more attraction to reactive oxygen and nitrogen species (RONS) radicals in the neutral environment. In vitro experiments show that triM nanozyme can improve the viability of injured neural cell. In the LPS-induced brain injury model, the superoxide dismutase (SOD) activity and lipid peroxidation can be greatly recovered after triM nanozyme treatment. Moreover, the triM nanozyme treatment can significantly improve the survival rate, neuroinflammation, and reference memory of injured mice. Present work provides a feasible route for improving selectivity of nanozyme in the physiological environment as well as exploring potential applications in brain science.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUwsyGPSCitP2InHaEqUKlqEXRgsxznIlIldrEToPx6glq6Md0Nz_vo7kXokpIhJYyOtAlWWzdMM5KSWByhPh1zGZFUvh4fdkF76CyENSEiSRN5inqcJIITSfto-Qy5-8IrX9bQ6KoqDV50wu9tDfizbN7wAtrG6wpP7Ufpna3BNvjJQwEerAFcOI_vvC4tntl167fn6KTQVYCL_Rygl_vpavIYzZcPs8ntPNKc8yYSlPFCcMGkAVHIFOJUmCQvgIlMjxljiSxiLnKRcpAiSyhoE2cGciNBMz5A1zvrxrv3FkKj6jIYqCptwbVBMZomhIlY8g4d7VDjXQjd4WrT_ar9VlGifjtU-w7VvsMucbWXt1kN-YH_K60DbnZAl1Rr13rbffqv7gepLX3Q</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Mu, Xiaoyu</creator><creator>Wang, Junying</creator><creator>Li, Yonghui</creator><creator>Xu, Fujuan</creator><creator>Long, Wei</creator><creator>Ouyang, Lufei</creator><creator>Liu, Haile</creator><creator>Jing, Yaqi</creator><creator>Wang, Jingya</creator><creator>Dai, Haitao</creator><creator>Liu, Qiang</creator><creator>Sun, Yuanming</creator><creator>Liu, Changlong</creator><creator>Zhang, Xiao-Dong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7212-0138</orcidid></search><sort><creationdate>20190226</creationdate><title>Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury</title><author>Mu, Xiaoyu ; Wang, Junying ; Li, Yonghui ; Xu, Fujuan ; Long, Wei ; Ouyang, Lufei ; Liu, Haile ; Jing, Yaqi ; Wang, Jingya ; Dai, Haitao ; Liu, Qiang ; Sun, Yuanming ; Liu, Changlong ; Zhang, Xiao-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-5123f53526ce5f68e485c7dfe25ba922276f435d583e65b71eac4bcedc6ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Junying</creatorcontrib><creatorcontrib>Li, Yonghui</creatorcontrib><creatorcontrib>Xu, Fujuan</creatorcontrib><creatorcontrib>Long, Wei</creatorcontrib><creatorcontrib>Ouyang, Lufei</creatorcontrib><creatorcontrib>Liu, Haile</creatorcontrib><creatorcontrib>Jing, Yaqi</creatorcontrib><creatorcontrib>Wang, Jingya</creatorcontrib><creatorcontrib>Dai, Haitao</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Sun, Yuanming</creatorcontrib><creatorcontrib>Liu, Changlong</creatorcontrib><creatorcontrib>Zhang, Xiao-Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Xiaoyu</au><au>Wang, Junying</au><au>Li, Yonghui</au><au>Xu, Fujuan</au><au>Long, Wei</au><au>Ouyang, Lufei</au><au>Liu, Haile</au><au>Jing, Yaqi</au><au>Wang, Jingya</au><au>Dai, Haitao</au><au>Liu, Qiang</au><au>Sun, Yuanming</au><au>Liu, Changlong</au><au>Zhang, Xiao-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>1870</spage><epage>1884</epage><pages>1870-1884</pages><artnum>acsnano.8b08045</artnum><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Metal nanozyme has attracted wide interest for biomedicine, and a highly catalytic material in the physiological environment is highly desired. However, catalytic selectivity of nanozyme is still highly challenging, limiting its wide application. Here, we show a trimetallic (triM) nanozyme with highly catalytic activity and environmental selectivity. Enzyme-mimicked investigations find that the triM system possesses multi-enzyme-mimetic activity for removing reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as 1O2, H2O2, •OH, and •NO. Importantly, triM nanozyme exhibits the significant neutral environment preference for removing the •OH, 1O2, and •NO free radical, indicating its highly catalytic selectivity. The density functional theory (DFT) calculations reveal that triM nanozyme can capture electrons very easily and provides more attraction to reactive oxygen and nitrogen species (RONS) radicals in the neutral environment. In vitro experiments show that triM nanozyme can improve the viability of injured neural cell. In the LPS-induced brain injury model, the superoxide dismutase (SOD) activity and lipid peroxidation can be greatly recovered after triM nanozyme treatment. Moreover, the triM nanozyme treatment can significantly improve the survival rate, neuroinflammation, and reference memory of injured mice. Present work provides a feasible route for improving selectivity of nanozyme in the physiological environment as well as exploring potential applications in brain science.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30753061</pmid><doi>10.1021/acsnano.8b08045</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7212-0138</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2019-02, Vol.13 (2), p.1870-1884, Article acsnano.8b08045
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2187025463
source American Chemical Society
title Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%20Trimetallic%20Nanozyme%20with%20Neutral%20Environment%20Preference%20for%20Brain%20Injury&rft.jtitle=ACS%20nano&rft.au=Mu,%20Xiaoyu&rft.date=2019-02-26&rft.volume=13&rft.issue=2&rft.spage=1870&rft.epage=1884&rft.pages=1870-1884&rft.artnum=acsnano.8b08045&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b08045&rft_dat=%3Cproquest_cross%3E2187025463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187025463&rft_id=info:pmid/30753061&rfr_iscdi=true