P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices
This study used a spatially controlled boron-doping technique that enables a p–n junction diode to be realized within a single 2D black phosphorus (BP) nanosheet for high-performance photovoltaic application. The reliability of the BP surface and state-of-the-art 2D p–n heterostructure’s gated junct...
Gespeichert in:
Veröffentlicht in: | ACS nano 2019-02, Vol.13 (2), p.1683-1693, Article acsnano.8b07730 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1693 |
---|---|
container_issue | 2 |
container_start_page | 1683 |
container_title | ACS nano |
container_volume | 13 |
creator | Kim, Dae-Kyoung Hong, Seok-Bo Jeong, Kwangsik Lee, Changmin Kim, Hyoungsub Cho, Mann-Ho |
description | This study used a spatially controlled boron-doping technique that enables a p–n junction diode to be realized within a single 2D black phosphorus (BP) nanosheet for high-performance photovoltaic application. The reliability of the BP surface and state-of-the-art 2D p–n heterostructure’s gated junctions was obtained using the controllable pulsed-plasma process technique. Chemical and structural analyses of the boron-doped BP were performed using X-ray photoelectron spectroscopy, transmission electron microscopy, and first-principles density functional theory (DFT) calculations, and the electrical characteristics of a field-effect transistor based on the p–n heterostructure were determined. The incorporated boron generated high electron density at the BP surface. The electron mobility of BP was significantly enhanced to ∼265 cm2/V·s for the top gating mode, indicating greatly improved electron transport behavior. Ultraviolet photoelectron spectroscopy and DFT characterizations revealed the occurrence of significant surface charge transfer in the BP. Moreover, the pulsed-plasma boron-doped BP p–n junction devices exhibited high-efficiency photodetection behavior (rise time: 1.2 ms and responsivity: 11.3 mA/W at V g = 0 V). This study’s findings on the tunable nature of the surface-transfer doping scheme reveal that BP is a promising candidate for optoelectronic devices and advanced complementary logic electronics. |
doi_str_mv | 10.1021/acsnano.8b07730 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187025225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187025225</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-f0319b6cfdac2bc202e2d1328dca40c1adb49c6ae5a9345574016d61b6f33a863</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EoqUwsyGPSCjFP7WTjNACBVXQgUps0Y3jtCmJXeykEhvvwBvyJKRq6cZ0r3TP90n3IHROSZ8SRq9BeQPG9qOUhCEnB6hLYy4DEsm3w_0uaAedeL8kRIRRKI9Rh5NQcCLiLlpMf76-n_FTY1RdWINHhc00nvnCzPG0BF8BvrXOmmBkVzrDtyWodzxdWL9aWNd4nFuHx8V8EUy1a_cKjNKbe23XtqyhUHik14XS_hQd5VB6fbabPTS7v3sdjoPJy8Pj8GYSAOe8DnLCaZxKlWegWKoYYZpllLMoUzAgikKWDmIlQQuI-UCIcECozCRNZc45RJL30OW2d-XsR6N9nVSFV7oswWjb-ITRKCRMMCZa9HqLKme9dzpPVq6owH0mlCQbvclOb7LT2yYuduVNWulsz__5bIGrLdAmk6VtnGl__bfuF2TKh3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187025225</pqid></control><display><type>article</type><title>P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices</title><source>American Chemical Society Journals</source><creator>Kim, Dae-Kyoung ; Hong, Seok-Bo ; Jeong, Kwangsik ; Lee, Changmin ; Kim, Hyoungsub ; Cho, Mann-Ho</creator><creatorcontrib>Kim, Dae-Kyoung ; Hong, Seok-Bo ; Jeong, Kwangsik ; Lee, Changmin ; Kim, Hyoungsub ; Cho, Mann-Ho</creatorcontrib><description>This study used a spatially controlled boron-doping technique that enables a p–n junction diode to be realized within a single 2D black phosphorus (BP) nanosheet for high-performance photovoltaic application. The reliability of the BP surface and state-of-the-art 2D p–n heterostructure’s gated junctions was obtained using the controllable pulsed-plasma process technique. Chemical and structural analyses of the boron-doped BP were performed using X-ray photoelectron spectroscopy, transmission electron microscopy, and first-principles density functional theory (DFT) calculations, and the electrical characteristics of a field-effect transistor based on the p–n heterostructure were determined. The incorporated boron generated high electron density at the BP surface. The electron mobility of BP was significantly enhanced to ∼265 cm2/V·s for the top gating mode, indicating greatly improved electron transport behavior. Ultraviolet photoelectron spectroscopy and DFT characterizations revealed the occurrence of significant surface charge transfer in the BP. Moreover, the pulsed-plasma boron-doped BP p–n junction devices exhibited high-efficiency photodetection behavior (rise time: 1.2 ms and responsivity: 11.3 mA/W at V g = 0 V). This study’s findings on the tunable nature of the surface-transfer doping scheme reveal that BP is a promising candidate for optoelectronic devices and advanced complementary logic electronics.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b07730</identifier><identifier>PMID: 30753059</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2019-02, Vol.13 (2), p.1683-1693, Article acsnano.8b07730</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-f0319b6cfdac2bc202e2d1328dca40c1adb49c6ae5a9345574016d61b6f33a863</citedby><cites>FETCH-LOGICAL-a333t-f0319b6cfdac2bc202e2d1328dca40c1adb49c6ae5a9345574016d61b6f33a863</cites><orcidid>0000-0003-3549-4250 ; 0000-0002-5621-3676 ; 0000-0001-5894-8628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b07730$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b07730$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30753059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dae-Kyoung</creatorcontrib><creatorcontrib>Hong, Seok-Bo</creatorcontrib><creatorcontrib>Jeong, Kwangsik</creatorcontrib><creatorcontrib>Lee, Changmin</creatorcontrib><creatorcontrib>Kim, Hyoungsub</creatorcontrib><creatorcontrib>Cho, Mann-Ho</creatorcontrib><title>P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>This study used a spatially controlled boron-doping technique that enables a p–n junction diode to be realized within a single 2D black phosphorus (BP) nanosheet for high-performance photovoltaic application. The reliability of the BP surface and state-of-the-art 2D p–n heterostructure’s gated junctions was obtained using the controllable pulsed-plasma process technique. Chemical and structural analyses of the boron-doped BP were performed using X-ray photoelectron spectroscopy, transmission electron microscopy, and first-principles density functional theory (DFT) calculations, and the electrical characteristics of a field-effect transistor based on the p–n heterostructure were determined. The incorporated boron generated high electron density at the BP surface. The electron mobility of BP was significantly enhanced to ∼265 cm2/V·s for the top gating mode, indicating greatly improved electron transport behavior. Ultraviolet photoelectron spectroscopy and DFT characterizations revealed the occurrence of significant surface charge transfer in the BP. Moreover, the pulsed-plasma boron-doped BP p–n junction devices exhibited high-efficiency photodetection behavior (rise time: 1.2 ms and responsivity: 11.3 mA/W at V g = 0 V). This study’s findings on the tunable nature of the surface-transfer doping scheme reveal that BP is a promising candidate for optoelectronic devices and advanced complementary logic electronics.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EoqUwsyGPSCjFP7WTjNACBVXQgUps0Y3jtCmJXeykEhvvwBvyJKRq6cZ0r3TP90n3IHROSZ8SRq9BeQPG9qOUhCEnB6hLYy4DEsm3w_0uaAedeL8kRIRRKI9Rh5NQcCLiLlpMf76-n_FTY1RdWINHhc00nvnCzPG0BF8BvrXOmmBkVzrDtyWodzxdWL9aWNd4nFuHx8V8EUy1a_cKjNKbe23XtqyhUHik14XS_hQd5VB6fbabPTS7v3sdjoPJy8Pj8GYSAOe8DnLCaZxKlWegWKoYYZpllLMoUzAgikKWDmIlQQuI-UCIcECozCRNZc45RJL30OW2d-XsR6N9nVSFV7oswWjb-ITRKCRMMCZa9HqLKme9dzpPVq6owH0mlCQbvclOb7LT2yYuduVNWulsz__5bIGrLdAmk6VtnGl__bfuF2TKh3A</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Kim, Dae-Kyoung</creator><creator>Hong, Seok-Bo</creator><creator>Jeong, Kwangsik</creator><creator>Lee, Changmin</creator><creator>Kim, Hyoungsub</creator><creator>Cho, Mann-Ho</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3549-4250</orcidid><orcidid>https://orcid.org/0000-0002-5621-3676</orcidid><orcidid>https://orcid.org/0000-0001-5894-8628</orcidid></search><sort><creationdate>20190226</creationdate><title>P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices</title><author>Kim, Dae-Kyoung ; Hong, Seok-Bo ; Jeong, Kwangsik ; Lee, Changmin ; Kim, Hyoungsub ; Cho, Mann-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-f0319b6cfdac2bc202e2d1328dca40c1adb49c6ae5a9345574016d61b6f33a863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dae-Kyoung</creatorcontrib><creatorcontrib>Hong, Seok-Bo</creatorcontrib><creatorcontrib>Jeong, Kwangsik</creatorcontrib><creatorcontrib>Lee, Changmin</creatorcontrib><creatorcontrib>Kim, Hyoungsub</creatorcontrib><creatorcontrib>Cho, Mann-Ho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dae-Kyoung</au><au>Hong, Seok-Bo</au><au>Jeong, Kwangsik</au><au>Lee, Changmin</au><au>Kim, Hyoungsub</au><au>Cho, Mann-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>1683</spage><epage>1693</epage><pages>1683-1693</pages><artnum>acsnano.8b07730</artnum><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>This study used a spatially controlled boron-doping technique that enables a p–n junction diode to be realized within a single 2D black phosphorus (BP) nanosheet for high-performance photovoltaic application. The reliability of the BP surface and state-of-the-art 2D p–n heterostructure’s gated junctions was obtained using the controllable pulsed-plasma process technique. Chemical and structural analyses of the boron-doped BP were performed using X-ray photoelectron spectroscopy, transmission electron microscopy, and first-principles density functional theory (DFT) calculations, and the electrical characteristics of a field-effect transistor based on the p–n heterostructure were determined. The incorporated boron generated high electron density at the BP surface. The electron mobility of BP was significantly enhanced to ∼265 cm2/V·s for the top gating mode, indicating greatly improved electron transport behavior. Ultraviolet photoelectron spectroscopy and DFT characterizations revealed the occurrence of significant surface charge transfer in the BP. Moreover, the pulsed-plasma boron-doped BP p–n junction devices exhibited high-efficiency photodetection behavior (rise time: 1.2 ms and responsivity: 11.3 mA/W at V g = 0 V). This study’s findings on the tunable nature of the surface-transfer doping scheme reveal that BP is a promising candidate for optoelectronic devices and advanced complementary logic electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30753059</pmid><doi>10.1021/acsnano.8b07730</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3549-4250</orcidid><orcidid>https://orcid.org/0000-0002-5621-3676</orcidid><orcidid>https://orcid.org/0000-0001-5894-8628</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2019-02, Vol.13 (2), p.1683-1693, Article acsnano.8b07730 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2187025225 |
source | American Chemical Society Journals |
title | P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P%E2%80%93N%20Junction%20Diode%20Using%20Plasma%20Boron-Doped%20Black%20Phosphorus%20for%20High-Performance%20Photovoltaic%20Devices&rft.jtitle=ACS%20nano&rft.au=Kim,%20Dae-Kyoung&rft.date=2019-02-26&rft.volume=13&rft.issue=2&rft.spage=1683&rft.epage=1693&rft.pages=1683-1693&rft.artnum=acsnano.8b07730&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b07730&rft_dat=%3Cproquest_cross%3E2187025225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187025225&rft_id=info:pmid/30753059&rfr_iscdi=true |