P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices

This study used a spatially controlled boron-doping technique that enables a p–n junction diode to be realized within a single 2D black phosphorus (BP) nanosheet for high-performance photovoltaic application. The reliability of the BP surface and state-of-the-art 2D p–n heterostructure’s gated junct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-02, Vol.13 (2), p.1683-1693, Article acsnano.8b07730
Hauptverfasser: Kim, Dae-Kyoung, Hong, Seok-Bo, Jeong, Kwangsik, Lee, Changmin, Kim, Hyoungsub, Cho, Mann-Ho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1693
container_issue 2
container_start_page 1683
container_title ACS nano
container_volume 13
creator Kim, Dae-Kyoung
Hong, Seok-Bo
Jeong, Kwangsik
Lee, Changmin
Kim, Hyoungsub
Cho, Mann-Ho
description This study used a spatially controlled boron-doping technique that enables a p–n junction diode to be realized within a single 2D black phosphorus (BP) nanosheet for high-performance photovoltaic application. The reliability of the BP surface and state-of-the-art 2D p–n heterostructure’s gated junctions was obtained using the controllable pulsed-plasma process technique. Chemical and structural analyses of the boron-doped BP were performed using X-ray photoelectron spectroscopy, transmission electron microscopy, and first-principles density functional theory (DFT) calculations, and the electrical characteristics of a field-effect transistor based on the p–n heterostructure were determined. The incorporated boron generated high electron density at the BP surface. The electron mobility of BP was significantly enhanced to ∼265 cm2/V·s for the top gating mode, indicating greatly improved electron transport behavior. Ultraviolet photoelectron spectroscopy and DFT characterizations revealed the occurrence of significant surface charge transfer in the BP. Moreover, the pulsed-plasma boron-doped BP p–n junction devices exhibited high-efficiency photodetection behavior (rise time: 1.2 ms and responsivity: 11.3 mA/W at V g = 0 V). This study’s findings on the tunable nature of the surface-transfer doping scheme reveal that BP is a promising candidate for optoelectronic devices and advanced complementary logic electronics.
doi_str_mv 10.1021/acsnano.8b07730
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187025225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187025225</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-f0319b6cfdac2bc202e2d1328dca40c1adb49c6ae5a9345574016d61b6f33a863</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EoqUwsyGPSCjFP7WTjNACBVXQgUps0Y3jtCmJXeykEhvvwBvyJKRq6cZ0r3TP90n3IHROSZ8SRq9BeQPG9qOUhCEnB6hLYy4DEsm3w_0uaAedeL8kRIRRKI9Rh5NQcCLiLlpMf76-n_FTY1RdWINHhc00nvnCzPG0BF8BvrXOmmBkVzrDtyWodzxdWL9aWNd4nFuHx8V8EUy1a_cKjNKbe23XtqyhUHik14XS_hQd5VB6fbabPTS7v3sdjoPJy8Pj8GYSAOe8DnLCaZxKlWegWKoYYZpllLMoUzAgikKWDmIlQQuI-UCIcECozCRNZc45RJL30OW2d-XsR6N9nVSFV7oswWjb-ITRKCRMMCZa9HqLKme9dzpPVq6owH0mlCQbvclOb7LT2yYuduVNWulsz__5bIGrLdAmk6VtnGl__bfuF2TKh3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187025225</pqid></control><display><type>article</type><title>P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices</title><source>American Chemical Society Journals</source><creator>Kim, Dae-Kyoung ; Hong, Seok-Bo ; Jeong, Kwangsik ; Lee, Changmin ; Kim, Hyoungsub ; Cho, Mann-Ho</creator><creatorcontrib>Kim, Dae-Kyoung ; Hong, Seok-Bo ; Jeong, Kwangsik ; Lee, Changmin ; Kim, Hyoungsub ; Cho, Mann-Ho</creatorcontrib><description>This study used a spatially controlled boron-doping technique that enables a p–n junction diode to be realized within a single 2D black phosphorus (BP) nanosheet for high-performance photovoltaic application. The reliability of the BP surface and state-of-the-art 2D p–n heterostructure’s gated junctions was obtained using the controllable pulsed-plasma process technique. Chemical and structural analyses of the boron-doped BP were performed using X-ray photoelectron spectroscopy, transmission electron microscopy, and first-principles density functional theory (DFT) calculations, and the electrical characteristics of a field-effect transistor based on the p–n heterostructure were determined. The incorporated boron generated high electron density at the BP surface. The electron mobility of BP was significantly enhanced to ∼265 cm2/V·s for the top gating mode, indicating greatly improved electron transport behavior. Ultraviolet photoelectron spectroscopy and DFT characterizations revealed the occurrence of significant surface charge transfer in the BP. Moreover, the pulsed-plasma boron-doped BP p–n junction devices exhibited high-efficiency photodetection behavior (rise time: 1.2 ms and responsivity: 11.3 mA/W at V g = 0 V). This study’s findings on the tunable nature of the surface-transfer doping scheme reveal that BP is a promising candidate for optoelectronic devices and advanced complementary logic electronics.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b07730</identifier><identifier>PMID: 30753059</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2019-02, Vol.13 (2), p.1683-1693, Article acsnano.8b07730</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-f0319b6cfdac2bc202e2d1328dca40c1adb49c6ae5a9345574016d61b6f33a863</citedby><cites>FETCH-LOGICAL-a333t-f0319b6cfdac2bc202e2d1328dca40c1adb49c6ae5a9345574016d61b6f33a863</cites><orcidid>0000-0003-3549-4250 ; 0000-0002-5621-3676 ; 0000-0001-5894-8628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b07730$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b07730$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30753059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dae-Kyoung</creatorcontrib><creatorcontrib>Hong, Seok-Bo</creatorcontrib><creatorcontrib>Jeong, Kwangsik</creatorcontrib><creatorcontrib>Lee, Changmin</creatorcontrib><creatorcontrib>Kim, Hyoungsub</creatorcontrib><creatorcontrib>Cho, Mann-Ho</creatorcontrib><title>P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>This study used a spatially controlled boron-doping technique that enables a p–n junction diode to be realized within a single 2D black phosphorus (BP) nanosheet for high-performance photovoltaic application. The reliability of the BP surface and state-of-the-art 2D p–n heterostructure’s gated junctions was obtained using the controllable pulsed-plasma process technique. Chemical and structural analyses of the boron-doped BP were performed using X-ray photoelectron spectroscopy, transmission electron microscopy, and first-principles density functional theory (DFT) calculations, and the electrical characteristics of a field-effect transistor based on the p–n heterostructure were determined. The incorporated boron generated high electron density at the BP surface. The electron mobility of BP was significantly enhanced to ∼265 cm2/V·s for the top gating mode, indicating greatly improved electron transport behavior. Ultraviolet photoelectron spectroscopy and DFT characterizations revealed the occurrence of significant surface charge transfer in the BP. Moreover, the pulsed-plasma boron-doped BP p–n junction devices exhibited high-efficiency photodetection behavior (rise time: 1.2 ms and responsivity: 11.3 mA/W at V g = 0 V). This study’s findings on the tunable nature of the surface-transfer doping scheme reveal that BP is a promising candidate for optoelectronic devices and advanced complementary logic electronics.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EoqUwsyGPSCjFP7WTjNACBVXQgUps0Y3jtCmJXeykEhvvwBvyJKRq6cZ0r3TP90n3IHROSZ8SRq9BeQPG9qOUhCEnB6hLYy4DEsm3w_0uaAedeL8kRIRRKI9Rh5NQcCLiLlpMf76-n_FTY1RdWINHhc00nvnCzPG0BF8BvrXOmmBkVzrDtyWodzxdWL9aWNd4nFuHx8V8EUy1a_cKjNKbe23XtqyhUHik14XS_hQd5VB6fbabPTS7v3sdjoPJy8Pj8GYSAOe8DnLCaZxKlWegWKoYYZpllLMoUzAgikKWDmIlQQuI-UCIcECozCRNZc45RJL30OW2d-XsR6N9nVSFV7oswWjb-ITRKCRMMCZa9HqLKme9dzpPVq6owH0mlCQbvclOb7LT2yYuduVNWulsz__5bIGrLdAmk6VtnGl__bfuF2TKh3A</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Kim, Dae-Kyoung</creator><creator>Hong, Seok-Bo</creator><creator>Jeong, Kwangsik</creator><creator>Lee, Changmin</creator><creator>Kim, Hyoungsub</creator><creator>Cho, Mann-Ho</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3549-4250</orcidid><orcidid>https://orcid.org/0000-0002-5621-3676</orcidid><orcidid>https://orcid.org/0000-0001-5894-8628</orcidid></search><sort><creationdate>20190226</creationdate><title>P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices</title><author>Kim, Dae-Kyoung ; Hong, Seok-Bo ; Jeong, Kwangsik ; Lee, Changmin ; Kim, Hyoungsub ; Cho, Mann-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-f0319b6cfdac2bc202e2d1328dca40c1adb49c6ae5a9345574016d61b6f33a863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dae-Kyoung</creatorcontrib><creatorcontrib>Hong, Seok-Bo</creatorcontrib><creatorcontrib>Jeong, Kwangsik</creatorcontrib><creatorcontrib>Lee, Changmin</creatorcontrib><creatorcontrib>Kim, Hyoungsub</creatorcontrib><creatorcontrib>Cho, Mann-Ho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dae-Kyoung</au><au>Hong, Seok-Bo</au><au>Jeong, Kwangsik</au><au>Lee, Changmin</au><au>Kim, Hyoungsub</au><au>Cho, Mann-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>1683</spage><epage>1693</epage><pages>1683-1693</pages><artnum>acsnano.8b07730</artnum><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>This study used a spatially controlled boron-doping technique that enables a p–n junction diode to be realized within a single 2D black phosphorus (BP) nanosheet for high-performance photovoltaic application. The reliability of the BP surface and state-of-the-art 2D p–n heterostructure’s gated junctions was obtained using the controllable pulsed-plasma process technique. Chemical and structural analyses of the boron-doped BP were performed using X-ray photoelectron spectroscopy, transmission electron microscopy, and first-principles density functional theory (DFT) calculations, and the electrical characteristics of a field-effect transistor based on the p–n heterostructure were determined. The incorporated boron generated high electron density at the BP surface. The electron mobility of BP was significantly enhanced to ∼265 cm2/V·s for the top gating mode, indicating greatly improved electron transport behavior. Ultraviolet photoelectron spectroscopy and DFT characterizations revealed the occurrence of significant surface charge transfer in the BP. Moreover, the pulsed-plasma boron-doped BP p–n junction devices exhibited high-efficiency photodetection behavior (rise time: 1.2 ms and responsivity: 11.3 mA/W at V g = 0 V). This study’s findings on the tunable nature of the surface-transfer doping scheme reveal that BP is a promising candidate for optoelectronic devices and advanced complementary logic electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30753059</pmid><doi>10.1021/acsnano.8b07730</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3549-4250</orcidid><orcidid>https://orcid.org/0000-0002-5621-3676</orcidid><orcidid>https://orcid.org/0000-0001-5894-8628</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2019-02, Vol.13 (2), p.1683-1693, Article acsnano.8b07730
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2187025225
source American Chemical Society Journals
title P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P%E2%80%93N%20Junction%20Diode%20Using%20Plasma%20Boron-Doped%20Black%20Phosphorus%20for%20High-Performance%20Photovoltaic%20Devices&rft.jtitle=ACS%20nano&rft.au=Kim,%20Dae-Kyoung&rft.date=2019-02-26&rft.volume=13&rft.issue=2&rft.spage=1683&rft.epage=1693&rft.pages=1683-1693&rft.artnum=acsnano.8b07730&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b07730&rft_dat=%3Cproquest_cross%3E2187025225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187025225&rft_id=info:pmid/30753059&rfr_iscdi=true