Metal Halide Perovskite Nanosheet for X‑ray High-Resolution Scintillation Imaging Screens

Scintillators, which are capable of converting ionizing radiation into visible photons, are an integral part of medical, security, and commercial diagnostic technologies such as X-ray imaging, nuclear cameras, and computed tomography. Conventional scintillator fabrication typically involves high-tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-02, Vol.13 (2), p.2520-2525
Hauptverfasser: Zhang, Yuhai, Sun, Ruijia, Ou, Xiangyu, Fu, Kaifang, Chen, Qiushui, Ding, Yuchong, Xu, Liang-Jin, Liu, Lingmei, Han, Yu, Malko, Anton V, Liu, Xiaogang, Yang, Huanghao, Bakr, Osman M, Liu, Hong, Mohammed, Omar F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2525
container_issue 2
container_start_page 2520
container_title ACS nano
container_volume 13
creator Zhang, Yuhai
Sun, Ruijia
Ou, Xiangyu
Fu, Kaifang
Chen, Qiushui
Ding, Yuchong
Xu, Liang-Jin
Liu, Lingmei
Han, Yu
Malko, Anton V
Liu, Xiaogang
Yang, Huanghao
Bakr, Osman M
Liu, Hong
Mohammed, Omar F
description Scintillators, which are capable of converting ionizing radiation into visible photons, are an integral part of medical, security, and commercial diagnostic technologies such as X-ray imaging, nuclear cameras, and computed tomography. Conventional scintillator fabrication typically involves high-temperature sintering, generating agglomerated powders or large bulk crystals, which pose major challenges for device integration and processability. On the other hand, colloidal quantum dot scintillators cannot be cast into compact solid films with the necessary thickness required for most X-ray applications. Here, we report the room-temperature synthesis of a colloidal scintillator comprising CsPbBr3 nanosheets of large concentration (up to 150 mg/mL). The CsPbBr3 colloid exhibits a light yield (∼21000 photons/MeV) higher than that of the commercially available Ce:LuAG single-crystal scintillator (∼18000 photons/MeV). Scintillators based on these nanosheets display both strong radioluminescence (RL) and long-term stability under X-ray illumination. Importantly, the colloidal scintillator can be readily cast into a uniform crack-free large-area film (8.5 × 8.5 cm2 in area) with the requisite thickness for high-resolution X-ray imaging applications. We showcase prototype applications of these high-quality scintillating films as X-ray imaging screens for a cellphone panel and a standard central processing unit chip. Our radiography prototype combines large-area processability with high resolution and a strong penetration ability to sheath materials, such as resin and silicon. We reveal an energy transfer process inside those stacked nanosheet solids that is responsible for their superb scintillation performance. Our findings demonstrate a large-area solution-processed scintillator of stable and efficient RL as a promising approach for low-cost radiography and X-ray imaging applications.
doi_str_mv 10.1021/acsnano.8b09484
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2186617637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186617637</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-39ae76e673da00444fcb65fc59c87570e5b95aa9a0da7f3efbf1ae339a9071743</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhgdRbK2u3UmWgqSd6SQzyVJEbaFe8AIFF-EkOWmnppk6kwjd-Qq-ok_iaGN3rs6F7_855yfkmNE-o0M2gMxWUOl-lNI4iIId0mUxFz6NxHR324esQw6sXVAaykiKfdLhVA6dnnfJyw3WUHojKFWO3j0a_W5fVY3erbO1c8TaK7Txpl8fnwbW3kjN5v4DWl02tdKV95ipqlZlCb_TeAkzVc3c1iBW9pDsFVBaPGprjzxfXT5djPzJ3fX44nziA5dB7fMYUAoUkudAaRAERZaKsMjCOItkKCmGaRwCxEBzkAXHIi0YIHeymEomA94jpxvfldFvDdo6WSqbobuqQt3YZMgiIZgUXDp0sEEzo601WCQro5Zg1gmjyU-iSZto0ibqFCeteZMuMd_yfxE64GwDOGWy0I2p3K__2n0DineDmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186617637</pqid></control><display><type>article</type><title>Metal Halide Perovskite Nanosheet for X‑ray High-Resolution Scintillation Imaging Screens</title><source>ACS Publications</source><creator>Zhang, Yuhai ; Sun, Ruijia ; Ou, Xiangyu ; Fu, Kaifang ; Chen, Qiushui ; Ding, Yuchong ; Xu, Liang-Jin ; Liu, Lingmei ; Han, Yu ; Malko, Anton V ; Liu, Xiaogang ; Yang, Huanghao ; Bakr, Osman M ; Liu, Hong ; Mohammed, Omar F</creator><creatorcontrib>Zhang, Yuhai ; Sun, Ruijia ; Ou, Xiangyu ; Fu, Kaifang ; Chen, Qiushui ; Ding, Yuchong ; Xu, Liang-Jin ; Liu, Lingmei ; Han, Yu ; Malko, Anton V ; Liu, Xiaogang ; Yang, Huanghao ; Bakr, Osman M ; Liu, Hong ; Mohammed, Omar F</creatorcontrib><description>Scintillators, which are capable of converting ionizing radiation into visible photons, are an integral part of medical, security, and commercial diagnostic technologies such as X-ray imaging, nuclear cameras, and computed tomography. Conventional scintillator fabrication typically involves high-temperature sintering, generating agglomerated powders or large bulk crystals, which pose major challenges for device integration and processability. On the other hand, colloidal quantum dot scintillators cannot be cast into compact solid films with the necessary thickness required for most X-ray applications. Here, we report the room-temperature synthesis of a colloidal scintillator comprising CsPbBr3 nanosheets of large concentration (up to 150 mg/mL). The CsPbBr3 colloid exhibits a light yield (∼21000 photons/MeV) higher than that of the commercially available Ce:LuAG single-crystal scintillator (∼18000 photons/MeV). Scintillators based on these nanosheets display both strong radioluminescence (RL) and long-term stability under X-ray illumination. Importantly, the colloidal scintillator can be readily cast into a uniform crack-free large-area film (8.5 × 8.5 cm2 in area) with the requisite thickness for high-resolution X-ray imaging applications. We showcase prototype applications of these high-quality scintillating films as X-ray imaging screens for a cellphone panel and a standard central processing unit chip. Our radiography prototype combines large-area processability with high resolution and a strong penetration ability to sheath materials, such as resin and silicon. We reveal an energy transfer process inside those stacked nanosheet solids that is responsible for their superb scintillation performance. Our findings demonstrate a large-area solution-processed scintillator of stable and efficient RL as a promising approach for low-cost radiography and X-ray imaging applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b09484</identifier><identifier>PMID: 30721023</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2019-02, Vol.13 (2), p.2520-2525</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-39ae76e673da00444fcb65fc59c87570e5b95aa9a0da7f3efbf1ae339a9071743</citedby><cites>FETCH-LOGICAL-a374t-39ae76e673da00444fcb65fc59c87570e5b95aa9a0da7f3efbf1ae339a9071743</cites><orcidid>0000-0001-6410-7112 ; 0000-0001-8500-1130 ; 0000-0003-2517-5790 ; 0000-0002-3428-1002 ; 0000-0003-1640-9620 ; 0000-0003-0175-0383 ; 0000-0003-1462-1118 ; 0000-0001-5894-0909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b09484$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b09484$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30721023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuhai</creatorcontrib><creatorcontrib>Sun, Ruijia</creatorcontrib><creatorcontrib>Ou, Xiangyu</creatorcontrib><creatorcontrib>Fu, Kaifang</creatorcontrib><creatorcontrib>Chen, Qiushui</creatorcontrib><creatorcontrib>Ding, Yuchong</creatorcontrib><creatorcontrib>Xu, Liang-Jin</creatorcontrib><creatorcontrib>Liu, Lingmei</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Malko, Anton V</creatorcontrib><creatorcontrib>Liu, Xiaogang</creatorcontrib><creatorcontrib>Yang, Huanghao</creatorcontrib><creatorcontrib>Bakr, Osman M</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Mohammed, Omar F</creatorcontrib><title>Metal Halide Perovskite Nanosheet for X‑ray High-Resolution Scintillation Imaging Screens</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Scintillators, which are capable of converting ionizing radiation into visible photons, are an integral part of medical, security, and commercial diagnostic technologies such as X-ray imaging, nuclear cameras, and computed tomography. Conventional scintillator fabrication typically involves high-temperature sintering, generating agglomerated powders or large bulk crystals, which pose major challenges for device integration and processability. On the other hand, colloidal quantum dot scintillators cannot be cast into compact solid films with the necessary thickness required for most X-ray applications. Here, we report the room-temperature synthesis of a colloidal scintillator comprising CsPbBr3 nanosheets of large concentration (up to 150 mg/mL). The CsPbBr3 colloid exhibits a light yield (∼21000 photons/MeV) higher than that of the commercially available Ce:LuAG single-crystal scintillator (∼18000 photons/MeV). Scintillators based on these nanosheets display both strong radioluminescence (RL) and long-term stability under X-ray illumination. Importantly, the colloidal scintillator can be readily cast into a uniform crack-free large-area film (8.5 × 8.5 cm2 in area) with the requisite thickness for high-resolution X-ray imaging applications. We showcase prototype applications of these high-quality scintillating films as X-ray imaging screens for a cellphone panel and a standard central processing unit chip. Our radiography prototype combines large-area processability with high resolution and a strong penetration ability to sheath materials, such as resin and silicon. We reveal an energy transfer process inside those stacked nanosheet solids that is responsible for their superb scintillation performance. Our findings demonstrate a large-area solution-processed scintillator of stable and efficient RL as a promising approach for low-cost radiography and X-ray imaging applications.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKw0AUhgdRbK2u3UmWgqSd6SQzyVJEbaFe8AIFF-EkOWmnppk6kwjd-Qq-ok_iaGN3rs6F7_855yfkmNE-o0M2gMxWUOl-lNI4iIId0mUxFz6NxHR324esQw6sXVAaykiKfdLhVA6dnnfJyw3WUHojKFWO3j0a_W5fVY3erbO1c8TaK7Txpl8fnwbW3kjN5v4DWl02tdKV95ipqlZlCb_TeAkzVc3c1iBW9pDsFVBaPGprjzxfXT5djPzJ3fX44nziA5dB7fMYUAoUkudAaRAERZaKsMjCOItkKCmGaRwCxEBzkAXHIi0YIHeymEomA94jpxvfldFvDdo6WSqbobuqQt3YZMgiIZgUXDp0sEEzo601WCQro5Zg1gmjyU-iSZto0ibqFCeteZMuMd_yfxE64GwDOGWy0I2p3K__2n0DineDmQ</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Zhang, Yuhai</creator><creator>Sun, Ruijia</creator><creator>Ou, Xiangyu</creator><creator>Fu, Kaifang</creator><creator>Chen, Qiushui</creator><creator>Ding, Yuchong</creator><creator>Xu, Liang-Jin</creator><creator>Liu, Lingmei</creator><creator>Han, Yu</creator><creator>Malko, Anton V</creator><creator>Liu, Xiaogang</creator><creator>Yang, Huanghao</creator><creator>Bakr, Osman M</creator><creator>Liu, Hong</creator><creator>Mohammed, Omar F</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6410-7112</orcidid><orcidid>https://orcid.org/0000-0001-8500-1130</orcidid><orcidid>https://orcid.org/0000-0003-2517-5790</orcidid><orcidid>https://orcid.org/0000-0002-3428-1002</orcidid><orcidid>https://orcid.org/0000-0003-1640-9620</orcidid><orcidid>https://orcid.org/0000-0003-0175-0383</orcidid><orcidid>https://orcid.org/0000-0003-1462-1118</orcidid><orcidid>https://orcid.org/0000-0001-5894-0909</orcidid></search><sort><creationdate>20190226</creationdate><title>Metal Halide Perovskite Nanosheet for X‑ray High-Resolution Scintillation Imaging Screens</title><author>Zhang, Yuhai ; Sun, Ruijia ; Ou, Xiangyu ; Fu, Kaifang ; Chen, Qiushui ; Ding, Yuchong ; Xu, Liang-Jin ; Liu, Lingmei ; Han, Yu ; Malko, Anton V ; Liu, Xiaogang ; Yang, Huanghao ; Bakr, Osman M ; Liu, Hong ; Mohammed, Omar F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-39ae76e673da00444fcb65fc59c87570e5b95aa9a0da7f3efbf1ae339a9071743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuhai</creatorcontrib><creatorcontrib>Sun, Ruijia</creatorcontrib><creatorcontrib>Ou, Xiangyu</creatorcontrib><creatorcontrib>Fu, Kaifang</creatorcontrib><creatorcontrib>Chen, Qiushui</creatorcontrib><creatorcontrib>Ding, Yuchong</creatorcontrib><creatorcontrib>Xu, Liang-Jin</creatorcontrib><creatorcontrib>Liu, Lingmei</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Malko, Anton V</creatorcontrib><creatorcontrib>Liu, Xiaogang</creatorcontrib><creatorcontrib>Yang, Huanghao</creatorcontrib><creatorcontrib>Bakr, Osman M</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Mohammed, Omar F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuhai</au><au>Sun, Ruijia</au><au>Ou, Xiangyu</au><au>Fu, Kaifang</au><au>Chen, Qiushui</au><au>Ding, Yuchong</au><au>Xu, Liang-Jin</au><au>Liu, Lingmei</au><au>Han, Yu</au><au>Malko, Anton V</au><au>Liu, Xiaogang</au><au>Yang, Huanghao</au><au>Bakr, Osman M</au><au>Liu, Hong</au><au>Mohammed, Omar F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal Halide Perovskite Nanosheet for X‑ray High-Resolution Scintillation Imaging Screens</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>2520</spage><epage>2525</epage><pages>2520-2525</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Scintillators, which are capable of converting ionizing radiation into visible photons, are an integral part of medical, security, and commercial diagnostic technologies such as X-ray imaging, nuclear cameras, and computed tomography. Conventional scintillator fabrication typically involves high-temperature sintering, generating agglomerated powders or large bulk crystals, which pose major challenges for device integration and processability. On the other hand, colloidal quantum dot scintillators cannot be cast into compact solid films with the necessary thickness required for most X-ray applications. Here, we report the room-temperature synthesis of a colloidal scintillator comprising CsPbBr3 nanosheets of large concentration (up to 150 mg/mL). The CsPbBr3 colloid exhibits a light yield (∼21000 photons/MeV) higher than that of the commercially available Ce:LuAG single-crystal scintillator (∼18000 photons/MeV). Scintillators based on these nanosheets display both strong radioluminescence (RL) and long-term stability under X-ray illumination. Importantly, the colloidal scintillator can be readily cast into a uniform crack-free large-area film (8.5 × 8.5 cm2 in area) with the requisite thickness for high-resolution X-ray imaging applications. We showcase prototype applications of these high-quality scintillating films as X-ray imaging screens for a cellphone panel and a standard central processing unit chip. Our radiography prototype combines large-area processability with high resolution and a strong penetration ability to sheath materials, such as resin and silicon. We reveal an energy transfer process inside those stacked nanosheet solids that is responsible for their superb scintillation performance. Our findings demonstrate a large-area solution-processed scintillator of stable and efficient RL as a promising approach for low-cost radiography and X-ray imaging applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30721023</pmid><doi>10.1021/acsnano.8b09484</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6410-7112</orcidid><orcidid>https://orcid.org/0000-0001-8500-1130</orcidid><orcidid>https://orcid.org/0000-0003-2517-5790</orcidid><orcidid>https://orcid.org/0000-0002-3428-1002</orcidid><orcidid>https://orcid.org/0000-0003-1640-9620</orcidid><orcidid>https://orcid.org/0000-0003-0175-0383</orcidid><orcidid>https://orcid.org/0000-0003-1462-1118</orcidid><orcidid>https://orcid.org/0000-0001-5894-0909</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2019-02, Vol.13 (2), p.2520-2525
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2186617637
source ACS Publications
title Metal Halide Perovskite Nanosheet for X‑ray High-Resolution Scintillation Imaging Screens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20Halide%20Perovskite%20Nanosheet%20for%20X%E2%80%91ray%20High-Resolution%20Scintillation%20Imaging%20Screens&rft.jtitle=ACS%20nano&rft.au=Zhang,%20Yuhai&rft.date=2019-02-26&rft.volume=13&rft.issue=2&rft.spage=2520&rft.epage=2525&rft.pages=2520-2525&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b09484&rft_dat=%3Cproquest_cross%3E2186617637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186617637&rft_id=info:pmid/30721023&rfr_iscdi=true