Surface Recombination in Ultra-Fast Carrier Dynamics of Perovskite Oxide La0.7Sr0.3MnO3 Thin Films

Aspects of the optoelectronic performance of thin-film ferromagnetic materials are evaluated for application in ultrafast devices. Dynamics of photocarriers and their associated spin polarization are measured using transient reflectivity (TR) measurements in cross linear and circular polarization co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-03, Vol.13 (3), p.3457-3465
Hauptverfasser: Yousefi Sarraf, Saeed, Singh, Sobhit, Garcia-Castro, Andrés Camilo, Trappen, Robbyn, Mottaghi, Navid, Cabrera, Guerau B, Huang, Chih-Yeh, Kumari, Shalini, Bhandari, Ghadendra, Bristow, Alan D, Romero, Aldo H, Holcomb, Mikel B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3465
container_issue 3
container_start_page 3457
container_title ACS nano
container_volume 13
creator Yousefi Sarraf, Saeed
Singh, Sobhit
Garcia-Castro, Andrés Camilo
Trappen, Robbyn
Mottaghi, Navid
Cabrera, Guerau B
Huang, Chih-Yeh
Kumari, Shalini
Bhandari, Ghadendra
Bristow, Alan D
Romero, Aldo H
Holcomb, Mikel B
description Aspects of the optoelectronic performance of thin-film ferromagnetic materials are evaluated for application in ultrafast devices. Dynamics of photocarriers and their associated spin polarization are measured using transient reflectivity (TR) measurements in cross linear and circular polarization configurations for La0.7Sr0.3MnO3 films with a range of thicknesses. Three spin-related recombination mechanisms have been observed for thicker films (thickness of d ≥ 20 nm) at different time regimes (τ), which are attributed to the electron–phonon recombination (τ < 1 ps), phonon-assisted spin–lattice recombination (τ ∼ 100 ps), and thermal diffusion and radiative recombination (τ > 1 ns). Density functional theory (DFT+U) based first-principles calculations provide information about the nature of the optical transitions and their probabilities for the majority and the minority spin channels. These transitions are partly responsible for the aforementioned recombination mechanisms, identified through the comparison of linear and circular TR measurements. The same sets of measurements for thinner films (4.4 nm ≤ d < 20 nm) revealed an additional relaxation dynamic (τ ∼ 10 ps), which is attributed to the enhanced surface recombination of charge carriers. Our DFT+U calculations further corroborate this observation, indicating an increase in the surface density of states with decreasing film thickness which results in higher amplitude and smaller time constant for surface recombination as the film thickness decreases.
doi_str_mv 10.1021/acsnano.8b09595
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2186615920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186615920</sourcerecordid><originalsourceid>FETCH-LOGICAL-a154t-333d9ce6bb3efccbfdd2b4d985d32532ef0d777e830110f418fe4079d0eb3b393</originalsourceid><addsrcrecordid>eNo9kM9LwzAcxYMoqNOz1xwFaU2apm2OMp0Kk4nbwFvJj28ws000aUX_eycbnt47PD48PghdUJJTUtBrqZOXPuSNIoILfoBOqGBVRprq9fC_c3qMTlPaEMLrpq5OkFqO0UoN-AV06JXzcnDBY-fxuhuizGYyDXgqY3QQ8e2Pl73TCQeLnyGGr_TuBsCLb2cAzyXJ62UkOXvyC4ZXb1vGzHV9OkNHVnYJzvc5QevZ3Wr6kM0X94_Tm3kmKS-HjDFmhIZKKQZWa2WNKVRpRMMNKzgrwBJT1zU0jFBKbEkbCyWphSGgmGKCTdDljvsRw-cIaWh7lzR0nfQQxtQWtKkqykVBttOr3XQrrd2EMfrtsZaS9s9kuzfZ7k2yX19gZ_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186615920</pqid></control><display><type>article</type><title>Surface Recombination in Ultra-Fast Carrier Dynamics of Perovskite Oxide La0.7Sr0.3MnO3 Thin Films</title><source>ACS Publications</source><creator>Yousefi Sarraf, Saeed ; Singh, Sobhit ; Garcia-Castro, Andrés Camilo ; Trappen, Robbyn ; Mottaghi, Navid ; Cabrera, Guerau B ; Huang, Chih-Yeh ; Kumari, Shalini ; Bhandari, Ghadendra ; Bristow, Alan D ; Romero, Aldo H ; Holcomb, Mikel B</creator><creatorcontrib>Yousefi Sarraf, Saeed ; Singh, Sobhit ; Garcia-Castro, Andrés Camilo ; Trappen, Robbyn ; Mottaghi, Navid ; Cabrera, Guerau B ; Huang, Chih-Yeh ; Kumari, Shalini ; Bhandari, Ghadendra ; Bristow, Alan D ; Romero, Aldo H ; Holcomb, Mikel B</creatorcontrib><description>Aspects of the optoelectronic performance of thin-film ferromagnetic materials are evaluated for application in ultrafast devices. Dynamics of photocarriers and their associated spin polarization are measured using transient reflectivity (TR) measurements in cross linear and circular polarization configurations for La0.7Sr0.3MnO3 films with a range of thicknesses. Three spin-related recombination mechanisms have been observed for thicker films (thickness of d ≥ 20 nm) at different time regimes (τ), which are attributed to the electron–phonon recombination (τ &lt; 1 ps), phonon-assisted spin–lattice recombination (τ ∼ 100 ps), and thermal diffusion and radiative recombination (τ &gt; 1 ns). Density functional theory (DFT+U) based first-principles calculations provide information about the nature of the optical transitions and their probabilities for the majority and the minority spin channels. These transitions are partly responsible for the aforementioned recombination mechanisms, identified through the comparison of linear and circular TR measurements. The same sets of measurements for thinner films (4.4 nm ≤ d &lt; 20 nm) revealed an additional relaxation dynamic (τ ∼ 10 ps), which is attributed to the enhanced surface recombination of charge carriers. Our DFT+U calculations further corroborate this observation, indicating an increase in the surface density of states with decreasing film thickness which results in higher amplitude and smaller time constant for surface recombination as the film thickness decreases.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b09595</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2019-03, Vol.13 (3), p.3457-3465</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2972-4654 ; 0000-0002-2676-483X ; 0000-0002-5292-4235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b09595$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b09595$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yousefi Sarraf, Saeed</creatorcontrib><creatorcontrib>Singh, Sobhit</creatorcontrib><creatorcontrib>Garcia-Castro, Andrés Camilo</creatorcontrib><creatorcontrib>Trappen, Robbyn</creatorcontrib><creatorcontrib>Mottaghi, Navid</creatorcontrib><creatorcontrib>Cabrera, Guerau B</creatorcontrib><creatorcontrib>Huang, Chih-Yeh</creatorcontrib><creatorcontrib>Kumari, Shalini</creatorcontrib><creatorcontrib>Bhandari, Ghadendra</creatorcontrib><creatorcontrib>Bristow, Alan D</creatorcontrib><creatorcontrib>Romero, Aldo H</creatorcontrib><creatorcontrib>Holcomb, Mikel B</creatorcontrib><title>Surface Recombination in Ultra-Fast Carrier Dynamics of Perovskite Oxide La0.7Sr0.3MnO3 Thin Films</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Aspects of the optoelectronic performance of thin-film ferromagnetic materials are evaluated for application in ultrafast devices. Dynamics of photocarriers and their associated spin polarization are measured using transient reflectivity (TR) measurements in cross linear and circular polarization configurations for La0.7Sr0.3MnO3 films with a range of thicknesses. Three spin-related recombination mechanisms have been observed for thicker films (thickness of d ≥ 20 nm) at different time regimes (τ), which are attributed to the electron–phonon recombination (τ &lt; 1 ps), phonon-assisted spin–lattice recombination (τ ∼ 100 ps), and thermal diffusion and radiative recombination (τ &gt; 1 ns). Density functional theory (DFT+U) based first-principles calculations provide information about the nature of the optical transitions and their probabilities for the majority and the minority spin channels. These transitions are partly responsible for the aforementioned recombination mechanisms, identified through the comparison of linear and circular TR measurements. The same sets of measurements for thinner films (4.4 nm ≤ d &lt; 20 nm) revealed an additional relaxation dynamic (τ ∼ 10 ps), which is attributed to the enhanced surface recombination of charge carriers. Our DFT+U calculations further corroborate this observation, indicating an increase in the surface density of states with decreasing film thickness which results in higher amplitude and smaller time constant for surface recombination as the film thickness decreases.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAcxYMoqNOz1xwFaU2apm2OMp0Kk4nbwFvJj28ws000aUX_eycbnt47PD48PghdUJJTUtBrqZOXPuSNIoILfoBOqGBVRprq9fC_c3qMTlPaEMLrpq5OkFqO0UoN-AV06JXzcnDBY-fxuhuizGYyDXgqY3QQ8e2Pl73TCQeLnyGGr_TuBsCLb2cAzyXJ62UkOXvyC4ZXb1vGzHV9OkNHVnYJzvc5QevZ3Wr6kM0X94_Tm3kmKS-HjDFmhIZKKQZWa2WNKVRpRMMNKzgrwBJT1zU0jFBKbEkbCyWphSGgmGKCTdDljvsRw-cIaWh7lzR0nfQQxtQWtKkqykVBttOr3XQrrd2EMfrtsZaS9s9kuzfZ7k2yX19gZ_k</recordid><startdate>20190326</startdate><enddate>20190326</enddate><creator>Yousefi Sarraf, Saeed</creator><creator>Singh, Sobhit</creator><creator>Garcia-Castro, Andrés Camilo</creator><creator>Trappen, Robbyn</creator><creator>Mottaghi, Navid</creator><creator>Cabrera, Guerau B</creator><creator>Huang, Chih-Yeh</creator><creator>Kumari, Shalini</creator><creator>Bhandari, Ghadendra</creator><creator>Bristow, Alan D</creator><creator>Romero, Aldo H</creator><creator>Holcomb, Mikel B</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2972-4654</orcidid><orcidid>https://orcid.org/0000-0002-2676-483X</orcidid><orcidid>https://orcid.org/0000-0002-5292-4235</orcidid></search><sort><creationdate>20190326</creationdate><title>Surface Recombination in Ultra-Fast Carrier Dynamics of Perovskite Oxide La0.7Sr0.3MnO3 Thin Films</title><author>Yousefi Sarraf, Saeed ; Singh, Sobhit ; Garcia-Castro, Andrés Camilo ; Trappen, Robbyn ; Mottaghi, Navid ; Cabrera, Guerau B ; Huang, Chih-Yeh ; Kumari, Shalini ; Bhandari, Ghadendra ; Bristow, Alan D ; Romero, Aldo H ; Holcomb, Mikel B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a154t-333d9ce6bb3efccbfdd2b4d985d32532ef0d777e830110f418fe4079d0eb3b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yousefi Sarraf, Saeed</creatorcontrib><creatorcontrib>Singh, Sobhit</creatorcontrib><creatorcontrib>Garcia-Castro, Andrés Camilo</creatorcontrib><creatorcontrib>Trappen, Robbyn</creatorcontrib><creatorcontrib>Mottaghi, Navid</creatorcontrib><creatorcontrib>Cabrera, Guerau B</creatorcontrib><creatorcontrib>Huang, Chih-Yeh</creatorcontrib><creatorcontrib>Kumari, Shalini</creatorcontrib><creatorcontrib>Bhandari, Ghadendra</creatorcontrib><creatorcontrib>Bristow, Alan D</creatorcontrib><creatorcontrib>Romero, Aldo H</creatorcontrib><creatorcontrib>Holcomb, Mikel B</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yousefi Sarraf, Saeed</au><au>Singh, Sobhit</au><au>Garcia-Castro, Andrés Camilo</au><au>Trappen, Robbyn</au><au>Mottaghi, Navid</au><au>Cabrera, Guerau B</au><au>Huang, Chih-Yeh</au><au>Kumari, Shalini</au><au>Bhandari, Ghadendra</au><au>Bristow, Alan D</au><au>Romero, Aldo H</au><au>Holcomb, Mikel B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Recombination in Ultra-Fast Carrier Dynamics of Perovskite Oxide La0.7Sr0.3MnO3 Thin Films</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-03-26</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>3457</spage><epage>3465</epage><pages>3457-3465</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Aspects of the optoelectronic performance of thin-film ferromagnetic materials are evaluated for application in ultrafast devices. Dynamics of photocarriers and their associated spin polarization are measured using transient reflectivity (TR) measurements in cross linear and circular polarization configurations for La0.7Sr0.3MnO3 films with a range of thicknesses. Three spin-related recombination mechanisms have been observed for thicker films (thickness of d ≥ 20 nm) at different time regimes (τ), which are attributed to the electron–phonon recombination (τ &lt; 1 ps), phonon-assisted spin–lattice recombination (τ ∼ 100 ps), and thermal diffusion and radiative recombination (τ &gt; 1 ns). Density functional theory (DFT+U) based first-principles calculations provide information about the nature of the optical transitions and their probabilities for the majority and the minority spin channels. These transitions are partly responsible for the aforementioned recombination mechanisms, identified through the comparison of linear and circular TR measurements. The same sets of measurements for thinner films (4.4 nm ≤ d &lt; 20 nm) revealed an additional relaxation dynamic (τ ∼ 10 ps), which is attributed to the enhanced surface recombination of charge carriers. Our DFT+U calculations further corroborate this observation, indicating an increase in the surface density of states with decreasing film thickness which results in higher amplitude and smaller time constant for surface recombination as the film thickness decreases.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.8b09595</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2972-4654</orcidid><orcidid>https://orcid.org/0000-0002-2676-483X</orcidid><orcidid>https://orcid.org/0000-0002-5292-4235</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2019-03, Vol.13 (3), p.3457-3465
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2186615920
source ACS Publications
title Surface Recombination in Ultra-Fast Carrier Dynamics of Perovskite Oxide La0.7Sr0.3MnO3 Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Recombination%20in%20Ultra-Fast%20Carrier%20Dynamics%20of%20Perovskite%20Oxide%20La0.7Sr0.3MnO3%20Thin%20Films&rft.jtitle=ACS%20nano&rft.au=Yousefi%20Sarraf,%20Saeed&rft.date=2019-03-26&rft.volume=13&rft.issue=3&rft.spage=3457&rft.epage=3465&rft.pages=3457-3465&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b09595&rft_dat=%3Cproquest_acs_j%3E2186615920%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186615920&rft_id=info:pmid/&rfr_iscdi=true