Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process
Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and ch...
Gespeichert in:
Veröffentlicht in: | Journal of food science 2019-04, Vol.84 (4), p.818-831 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 831 |
---|---|
container_issue | 4 |
container_start_page | 818 |
container_title | Journal of food science |
container_volume | 84 |
creator | Tapia‐Hernández, José Agustín Del‐Toro‐Sánchez, Carmen Lizette Cinco‐Moroyoqui, Francisco Javier Ruiz‐Cruz, Saúl Juárez, Josué Castro‐Enríquez, Daniela Denisse Barreras‐Urbina, Carlos Gregorio López‐Ahumada, Guadalupe Amanda Rodríguez‐Félix, Francisco |
description | Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and characterize gallic acid‐loaded zein nanoparticles obtained by the electrospraying process to provide protection to gallic acid from environmental factors. Thus, it was related to the concentration of gallic acid in physicochemical and rheological properties of the electrosprayed solution, and also to equipment parameters, such as voltage, flow rate, and distance of the collector in morphology, and particle size. The physicochemical properties showed a relationship in the formation of a Taylor cone, in which at a low concentration of gallic acid (1% w/v), low viscosity (0.00464 ± 0.00001 Pa·s), and density (0.886 ± 0.00002 g/cm3), as well as high electrical conductivity (369 ± 4.3 µs/cm), forms a stable cone‐jet mode. The rheological properties and the Power Law model of the gallic acid‐zein electrosprayed solution demonstrated Newtonian behavior (n = 1). The morphology and size of the particle were dependent on the concentration of gallic acid. Electrosprayed parameters with high voltage (15 kV), low flow rate (0.1 mL/hr), and short distance (10 cm) exhibited a smaller diameter and spherical morphology. FT–IR showed interaction in the gallic acid‐loaded zein nanoparticle by hydrogen bonds. Therefore, the electrospraying process is a feasible technique for obtaining gallic acid‐loaded zein nanoparticles and providing potential protection to gallic acid from environmental factors. |
doi_str_mv | 10.1111/1750-3841.14486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2186152833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186152833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3726-3b15f8ba32b3b72d4c16f28717dbca5568cd21218a1a9de959d61d3539d6c2153</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EoqUws6FILCxpfXbsOGMpbQFVgAQsLJZjuyhVmhS7EerGI_CMPAkuLR1Y8HLy6btfdx9Cp4C7EF4PUoZjKhLoQpIIvofau84-amNMSAyQpC105P0Mr_-UH6IWxQKTjCVtdDlWZVnoqK8L8_XxOamVsSZ6sUUV3amqXii3LHRpfZSvomFp9dLVfuHUqqheowdXa-v9MTqYqtLbk23toOfR8GlwHU_uxzeD_iTWNCU8pjmwqcgVJTnNU2ISDXxKRAqpybVijAttCBAQClRmbMYyw8FQRkPVBBjtoItN7sLVb431SzkvvLZlqSpbN16GUQ6MCEoDev4HndWNq8J2khCcZiLjkAWqt6F0OMo7O5ULV8yVW0nAcq1XrmXKtUz5ozdMnG1zm3xuzY7_9RkAvgHei9Ku_suTt6Orx03yN-37g0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207989619</pqid></control><display><type>article</type><title>Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tapia‐Hernández, José Agustín ; Del‐Toro‐Sánchez, Carmen Lizette ; Cinco‐Moroyoqui, Francisco Javier ; Ruiz‐Cruz, Saúl ; Juárez, Josué ; Castro‐Enríquez, Daniela Denisse ; Barreras‐Urbina, Carlos Gregorio ; López‐Ahumada, Guadalupe Amanda ; Rodríguez‐Félix, Francisco</creator><creatorcontrib>Tapia‐Hernández, José Agustín ; Del‐Toro‐Sánchez, Carmen Lizette ; Cinco‐Moroyoqui, Francisco Javier ; Ruiz‐Cruz, Saúl ; Juárez, Josué ; Castro‐Enríquez, Daniela Denisse ; Barreras‐Urbina, Carlos Gregorio ; López‐Ahumada, Guadalupe Amanda ; Rodríguez‐Félix, Francisco</creatorcontrib><description>Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and characterize gallic acid‐loaded zein nanoparticles obtained by the electrospraying process to provide protection to gallic acid from environmental factors. Thus, it was related to the concentration of gallic acid in physicochemical and rheological properties of the electrosprayed solution, and also to equipment parameters, such as voltage, flow rate, and distance of the collector in morphology, and particle size. The physicochemical properties showed a relationship in the formation of a Taylor cone, in which at a low concentration of gallic acid (1% w/v), low viscosity (0.00464 ± 0.00001 Pa·s), and density (0.886 ± 0.00002 g/cm3), as well as high electrical conductivity (369 ± 4.3 µs/cm), forms a stable cone‐jet mode. The rheological properties and the Power Law model of the gallic acid‐zein electrosprayed solution demonstrated Newtonian behavior (n = 1). The morphology and size of the particle were dependent on the concentration of gallic acid. Electrosprayed parameters with high voltage (15 kV), low flow rate (0.1 mL/hr), and short distance (10 cm) exhibited a smaller diameter and spherical morphology. FT–IR showed interaction in the gallic acid‐loaded zein nanoparticle by hydrogen bonds. Therefore, the electrospraying process is a feasible technique for obtaining gallic acid‐loaded zein nanoparticles and providing potential protection to gallic acid from environmental factors.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/1750-3841.14486</identifier><identifier>PMID: 30802954</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acids ; Antioxidants ; biopolymer ; Biopolymers ; Electric potential ; Electrical conductivity ; Electrical resistivity ; Electrospraying ; Environmental factors ; Flow rates ; Flow velocity ; Gallic acid ; High voltage ; High voltages ; Hydrogen bonding ; Hydrogen bonds ; Hydrophobicity ; Low flow ; Morphology ; Nanoparticles ; Parameters ; Physicochemical properties ; Properties (attributes) ; Rheological properties ; Rheology ; Viscosity ; Voltage ; Zein</subject><ispartof>Journal of food science, 2019-04, Vol.84 (4), p.818-831</ispartof><rights>2019 Institute of Food Technologists</rights><rights>2019 Institute of Food Technologists®.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3726-3b15f8ba32b3b72d4c16f28717dbca5568cd21218a1a9de959d61d3539d6c2153</citedby><cites>FETCH-LOGICAL-c3726-3b15f8ba32b3b72d4c16f28717dbca5568cd21218a1a9de959d61d3539d6c2153</cites><orcidid>0000-0001-7687-0633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1750-3841.14486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1750-3841.14486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30802954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tapia‐Hernández, José Agustín</creatorcontrib><creatorcontrib>Del‐Toro‐Sánchez, Carmen Lizette</creatorcontrib><creatorcontrib>Cinco‐Moroyoqui, Francisco Javier</creatorcontrib><creatorcontrib>Ruiz‐Cruz, Saúl</creatorcontrib><creatorcontrib>Juárez, Josué</creatorcontrib><creatorcontrib>Castro‐Enríquez, Daniela Denisse</creatorcontrib><creatorcontrib>Barreras‐Urbina, Carlos Gregorio</creatorcontrib><creatorcontrib>López‐Ahumada, Guadalupe Amanda</creatorcontrib><creatorcontrib>Rodríguez‐Félix, Francisco</creatorcontrib><title>Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and characterize gallic acid‐loaded zein nanoparticles obtained by the electrospraying process to provide protection to gallic acid from environmental factors. Thus, it was related to the concentration of gallic acid in physicochemical and rheological properties of the electrosprayed solution, and also to equipment parameters, such as voltage, flow rate, and distance of the collector in morphology, and particle size. The physicochemical properties showed a relationship in the formation of a Taylor cone, in which at a low concentration of gallic acid (1% w/v), low viscosity (0.00464 ± 0.00001 Pa·s), and density (0.886 ± 0.00002 g/cm3), as well as high electrical conductivity (369 ± 4.3 µs/cm), forms a stable cone‐jet mode. The rheological properties and the Power Law model of the gallic acid‐zein electrosprayed solution demonstrated Newtonian behavior (n = 1). The morphology and size of the particle were dependent on the concentration of gallic acid. Electrosprayed parameters with high voltage (15 kV), low flow rate (0.1 mL/hr), and short distance (10 cm) exhibited a smaller diameter and spherical morphology. FT–IR showed interaction in the gallic acid‐loaded zein nanoparticle by hydrogen bonds. Therefore, the electrospraying process is a feasible technique for obtaining gallic acid‐loaded zein nanoparticles and providing potential protection to gallic acid from environmental factors.</description><subject>Acids</subject><subject>Antioxidants</subject><subject>biopolymer</subject><subject>Biopolymers</subject><subject>Electric potential</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrospraying</subject><subject>Environmental factors</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Gallic acid</subject><subject>High voltage</subject><subject>High voltages</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobicity</subject><subject>Low flow</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Parameters</subject><subject>Physicochemical properties</subject><subject>Properties (attributes)</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Viscosity</subject><subject>Voltage</subject><subject>Zein</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EoqUws6FILCxpfXbsOGMpbQFVgAQsLJZjuyhVmhS7EerGI_CMPAkuLR1Y8HLy6btfdx9Cp4C7EF4PUoZjKhLoQpIIvofau84-amNMSAyQpC105P0Mr_-UH6IWxQKTjCVtdDlWZVnoqK8L8_XxOamVsSZ6sUUV3amqXii3LHRpfZSvomFp9dLVfuHUqqheowdXa-v9MTqYqtLbk23toOfR8GlwHU_uxzeD_iTWNCU8pjmwqcgVJTnNU2ISDXxKRAqpybVijAttCBAQClRmbMYyw8FQRkPVBBjtoItN7sLVb431SzkvvLZlqSpbN16GUQ6MCEoDev4HndWNq8J2khCcZiLjkAWqt6F0OMo7O5ULV8yVW0nAcq1XrmXKtUz5ozdMnG1zm3xuzY7_9RkAvgHei9Ku_suTt6Orx03yN-37g0I</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Tapia‐Hernández, José Agustín</creator><creator>Del‐Toro‐Sánchez, Carmen Lizette</creator><creator>Cinco‐Moroyoqui, Francisco Javier</creator><creator>Ruiz‐Cruz, Saúl</creator><creator>Juárez, Josué</creator><creator>Castro‐Enríquez, Daniela Denisse</creator><creator>Barreras‐Urbina, Carlos Gregorio</creator><creator>López‐Ahumada, Guadalupe Amanda</creator><creator>Rodríguez‐Félix, Francisco</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7687-0633</orcidid></search><sort><creationdate>201904</creationdate><title>Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process</title><author>Tapia‐Hernández, José Agustín ; Del‐Toro‐Sánchez, Carmen Lizette ; Cinco‐Moroyoqui, Francisco Javier ; Ruiz‐Cruz, Saúl ; Juárez, Josué ; Castro‐Enríquez, Daniela Denisse ; Barreras‐Urbina, Carlos Gregorio ; López‐Ahumada, Guadalupe Amanda ; Rodríguez‐Félix, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3726-3b15f8ba32b3b72d4c16f28717dbca5568cd21218a1a9de959d61d3539d6c2153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acids</topic><topic>Antioxidants</topic><topic>biopolymer</topic><topic>Biopolymers</topic><topic>Electric potential</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrospraying</topic><topic>Environmental factors</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Gallic acid</topic><topic>High voltage</topic><topic>High voltages</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobicity</topic><topic>Low flow</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Parameters</topic><topic>Physicochemical properties</topic><topic>Properties (attributes)</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Viscosity</topic><topic>Voltage</topic><topic>Zein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tapia‐Hernández, José Agustín</creatorcontrib><creatorcontrib>Del‐Toro‐Sánchez, Carmen Lizette</creatorcontrib><creatorcontrib>Cinco‐Moroyoqui, Francisco Javier</creatorcontrib><creatorcontrib>Ruiz‐Cruz, Saúl</creatorcontrib><creatorcontrib>Juárez, Josué</creatorcontrib><creatorcontrib>Castro‐Enríquez, Daniela Denisse</creatorcontrib><creatorcontrib>Barreras‐Urbina, Carlos Gregorio</creatorcontrib><creatorcontrib>López‐Ahumada, Guadalupe Amanda</creatorcontrib><creatorcontrib>Rodríguez‐Félix, Francisco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tapia‐Hernández, José Agustín</au><au>Del‐Toro‐Sánchez, Carmen Lizette</au><au>Cinco‐Moroyoqui, Francisco Javier</au><au>Ruiz‐Cruz, Saúl</au><au>Juárez, Josué</au><au>Castro‐Enríquez, Daniela Denisse</au><au>Barreras‐Urbina, Carlos Gregorio</au><au>López‐Ahumada, Guadalupe Amanda</au><au>Rodríguez‐Félix, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2019-04</date><risdate>2019</risdate><volume>84</volume><issue>4</issue><spage>818</spage><epage>831</epage><pages>818-831</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><abstract>Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and characterize gallic acid‐loaded zein nanoparticles obtained by the electrospraying process to provide protection to gallic acid from environmental factors. Thus, it was related to the concentration of gallic acid in physicochemical and rheological properties of the electrosprayed solution, and also to equipment parameters, such as voltage, flow rate, and distance of the collector in morphology, and particle size. The physicochemical properties showed a relationship in the formation of a Taylor cone, in which at a low concentration of gallic acid (1% w/v), low viscosity (0.00464 ± 0.00001 Pa·s), and density (0.886 ± 0.00002 g/cm3), as well as high electrical conductivity (369 ± 4.3 µs/cm), forms a stable cone‐jet mode. The rheological properties and the Power Law model of the gallic acid‐zein electrosprayed solution demonstrated Newtonian behavior (n = 1). The morphology and size of the particle were dependent on the concentration of gallic acid. Electrosprayed parameters with high voltage (15 kV), low flow rate (0.1 mL/hr), and short distance (10 cm) exhibited a smaller diameter and spherical morphology. FT–IR showed interaction in the gallic acid‐loaded zein nanoparticle by hydrogen bonds. Therefore, the electrospraying process is a feasible technique for obtaining gallic acid‐loaded zein nanoparticles and providing potential protection to gallic acid from environmental factors.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30802954</pmid><doi>10.1111/1750-3841.14486</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7687-0633</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1147 |
ispartof | Journal of food science, 2019-04, Vol.84 (4), p.818-831 |
issn | 0022-1147 1750-3841 |
language | eng |
recordid | cdi_proquest_miscellaneous_2186152833 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acids Antioxidants biopolymer Biopolymers Electric potential Electrical conductivity Electrical resistivity Electrospraying Environmental factors Flow rates Flow velocity Gallic acid High voltage High voltages Hydrogen bonding Hydrogen bonds Hydrophobicity Low flow Morphology Nanoparticles Parameters Physicochemical properties Properties (attributes) Rheological properties Rheology Viscosity Voltage Zein |
title | Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gallic%20Acid%E2%80%90Loaded%20Zein%20Nanoparticles%20by%20Electrospraying%20Process&rft.jtitle=Journal%20of%20food%20science&rft.au=Tapia%E2%80%90Hern%C3%A1ndez,%20Jos%C3%A9%20Agust%C3%ADn&rft.date=2019-04&rft.volume=84&rft.issue=4&rft.spage=818&rft.epage=831&rft.pages=818-831&rft.issn=0022-1147&rft.eissn=1750-3841&rft_id=info:doi/10.1111/1750-3841.14486&rft_dat=%3Cproquest_cross%3E2186152833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207989619&rft_id=info:pmid/30802954&rfr_iscdi=true |