Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process

Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food science 2019-04, Vol.84 (4), p.818-831
Hauptverfasser: Tapia‐Hernández, José Agustín, Del‐Toro‐Sánchez, Carmen Lizette, Cinco‐Moroyoqui, Francisco Javier, Ruiz‐Cruz, Saúl, Juárez, Josué, Castro‐Enríquez, Daniela Denisse, Barreras‐Urbina, Carlos Gregorio, López‐Ahumada, Guadalupe Amanda, Rodríguez‐Félix, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 831
container_issue 4
container_start_page 818
container_title Journal of food science
container_volume 84
creator Tapia‐Hernández, José Agustín
Del‐Toro‐Sánchez, Carmen Lizette
Cinco‐Moroyoqui, Francisco Javier
Ruiz‐Cruz, Saúl
Juárez, Josué
Castro‐Enríquez, Daniela Denisse
Barreras‐Urbina, Carlos Gregorio
López‐Ahumada, Guadalupe Amanda
Rodríguez‐Félix, Francisco
description Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and characterize gallic acid‐loaded zein nanoparticles obtained by the electrospraying process to provide protection to gallic acid from environmental factors. Thus, it was related to the concentration of gallic acid in physicochemical and rheological properties of the electrosprayed solution, and also to equipment parameters, such as voltage, flow rate, and distance of the collector in morphology, and particle size. The physicochemical properties showed a relationship in the formation of a Taylor cone, in which at a low concentration of gallic acid (1% w/v), low viscosity (0.00464 ± 0.00001 Pa·s), and density (0.886 ± 0.00002 g/cm3), as well as high electrical conductivity (369 ± 4.3 µs/cm), forms a stable cone‐jet mode. The rheological properties and the Power Law model of the gallic acid‐zein electrosprayed solution demonstrated Newtonian behavior (n = 1). The morphology and size of the particle were dependent on the concentration of gallic acid. Electrosprayed parameters with high voltage (15 kV), low flow rate (0.1 mL/hr), and short distance (10 cm) exhibited a smaller diameter and spherical morphology. FT–IR showed interaction in the gallic acid‐loaded zein nanoparticle by hydrogen bonds. Therefore, the electrospraying process is a feasible technique for obtaining gallic acid‐loaded zein nanoparticles and providing potential protection to gallic acid from environmental factors.
doi_str_mv 10.1111/1750-3841.14486
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2186152833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186152833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3726-3b15f8ba32b3b72d4c16f28717dbca5568cd21218a1a9de959d61d3539d6c2153</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EoqUws6FILCxpfXbsOGMpbQFVgAQsLJZjuyhVmhS7EerGI_CMPAkuLR1Y8HLy6btfdx9Cp4C7EF4PUoZjKhLoQpIIvofau84-amNMSAyQpC105P0Mr_-UH6IWxQKTjCVtdDlWZVnoqK8L8_XxOamVsSZ6sUUV3amqXii3LHRpfZSvomFp9dLVfuHUqqheowdXa-v9MTqYqtLbk23toOfR8GlwHU_uxzeD_iTWNCU8pjmwqcgVJTnNU2ISDXxKRAqpybVijAttCBAQClRmbMYyw8FQRkPVBBjtoItN7sLVb431SzkvvLZlqSpbN16GUQ6MCEoDev4HndWNq8J2khCcZiLjkAWqt6F0OMo7O5ULV8yVW0nAcq1XrmXKtUz5ozdMnG1zm3xuzY7_9RkAvgHei9Ku_suTt6Orx03yN-37g0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207989619</pqid></control><display><type>article</type><title>Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tapia‐Hernández, José Agustín ; Del‐Toro‐Sánchez, Carmen Lizette ; Cinco‐Moroyoqui, Francisco Javier ; Ruiz‐Cruz, Saúl ; Juárez, Josué ; Castro‐Enríquez, Daniela Denisse ; Barreras‐Urbina, Carlos Gregorio ; López‐Ahumada, Guadalupe Amanda ; Rodríguez‐Félix, Francisco</creator><creatorcontrib>Tapia‐Hernández, José Agustín ; Del‐Toro‐Sánchez, Carmen Lizette ; Cinco‐Moroyoqui, Francisco Javier ; Ruiz‐Cruz, Saúl ; Juárez, Josué ; Castro‐Enríquez, Daniela Denisse ; Barreras‐Urbina, Carlos Gregorio ; López‐Ahumada, Guadalupe Amanda ; Rodríguez‐Félix, Francisco</creatorcontrib><description>Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and characterize gallic acid‐loaded zein nanoparticles obtained by the electrospraying process to provide protection to gallic acid from environmental factors. Thus, it was related to the concentration of gallic acid in physicochemical and rheological properties of the electrosprayed solution, and also to equipment parameters, such as voltage, flow rate, and distance of the collector in morphology, and particle size. The physicochemical properties showed a relationship in the formation of a Taylor cone, in which at a low concentration of gallic acid (1% w/v), low viscosity (0.00464 ± 0.00001 Pa·s), and density (0.886 ± 0.00002 g/cm3), as well as high electrical conductivity (369 ± 4.3 µs/cm), forms a stable cone‐jet mode. The rheological properties and the Power Law model of the gallic acid‐zein electrosprayed solution demonstrated Newtonian behavior (n = 1). The morphology and size of the particle were dependent on the concentration of gallic acid. Electrosprayed parameters with high voltage (15 kV), low flow rate (0.1 mL/hr), and short distance (10 cm) exhibited a smaller diameter and spherical morphology. FT–IR showed interaction in the gallic acid‐loaded zein nanoparticle by hydrogen bonds. Therefore, the electrospraying process is a feasible technique for obtaining gallic acid‐loaded zein nanoparticles and providing potential protection to gallic acid from environmental factors.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/1750-3841.14486</identifier><identifier>PMID: 30802954</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acids ; Antioxidants ; biopolymer ; Biopolymers ; Electric potential ; Electrical conductivity ; Electrical resistivity ; Electrospraying ; Environmental factors ; Flow rates ; Flow velocity ; Gallic acid ; High voltage ; High voltages ; Hydrogen bonding ; Hydrogen bonds ; Hydrophobicity ; Low flow ; Morphology ; Nanoparticles ; Parameters ; Physicochemical properties ; Properties (attributes) ; Rheological properties ; Rheology ; Viscosity ; Voltage ; Zein</subject><ispartof>Journal of food science, 2019-04, Vol.84 (4), p.818-831</ispartof><rights>2019 Institute of Food Technologists</rights><rights>2019 Institute of Food Technologists®.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3726-3b15f8ba32b3b72d4c16f28717dbca5568cd21218a1a9de959d61d3539d6c2153</citedby><cites>FETCH-LOGICAL-c3726-3b15f8ba32b3b72d4c16f28717dbca5568cd21218a1a9de959d61d3539d6c2153</cites><orcidid>0000-0001-7687-0633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1750-3841.14486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1750-3841.14486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30802954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tapia‐Hernández, José Agustín</creatorcontrib><creatorcontrib>Del‐Toro‐Sánchez, Carmen Lizette</creatorcontrib><creatorcontrib>Cinco‐Moroyoqui, Francisco Javier</creatorcontrib><creatorcontrib>Ruiz‐Cruz, Saúl</creatorcontrib><creatorcontrib>Juárez, Josué</creatorcontrib><creatorcontrib>Castro‐Enríquez, Daniela Denisse</creatorcontrib><creatorcontrib>Barreras‐Urbina, Carlos Gregorio</creatorcontrib><creatorcontrib>López‐Ahumada, Guadalupe Amanda</creatorcontrib><creatorcontrib>Rodríguez‐Félix, Francisco</creatorcontrib><title>Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and characterize gallic acid‐loaded zein nanoparticles obtained by the electrospraying process to provide protection to gallic acid from environmental factors. Thus, it was related to the concentration of gallic acid in physicochemical and rheological properties of the electrosprayed solution, and also to equipment parameters, such as voltage, flow rate, and distance of the collector in morphology, and particle size. The physicochemical properties showed a relationship in the formation of a Taylor cone, in which at a low concentration of gallic acid (1% w/v), low viscosity (0.00464 ± 0.00001 Pa·s), and density (0.886 ± 0.00002 g/cm3), as well as high electrical conductivity (369 ± 4.3 µs/cm), forms a stable cone‐jet mode. The rheological properties and the Power Law model of the gallic acid‐zein electrosprayed solution demonstrated Newtonian behavior (n = 1). The morphology and size of the particle were dependent on the concentration of gallic acid. Electrosprayed parameters with high voltage (15 kV), low flow rate (0.1 mL/hr), and short distance (10 cm) exhibited a smaller diameter and spherical morphology. FT–IR showed interaction in the gallic acid‐loaded zein nanoparticle by hydrogen bonds. Therefore, the electrospraying process is a feasible technique for obtaining gallic acid‐loaded zein nanoparticles and providing potential protection to gallic acid from environmental factors.</description><subject>Acids</subject><subject>Antioxidants</subject><subject>biopolymer</subject><subject>Biopolymers</subject><subject>Electric potential</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrospraying</subject><subject>Environmental factors</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Gallic acid</subject><subject>High voltage</subject><subject>High voltages</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobicity</subject><subject>Low flow</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Parameters</subject><subject>Physicochemical properties</subject><subject>Properties (attributes)</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Viscosity</subject><subject>Voltage</subject><subject>Zein</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EoqUws6FILCxpfXbsOGMpbQFVgAQsLJZjuyhVmhS7EerGI_CMPAkuLR1Y8HLy6btfdx9Cp4C7EF4PUoZjKhLoQpIIvofau84-amNMSAyQpC105P0Mr_-UH6IWxQKTjCVtdDlWZVnoqK8L8_XxOamVsSZ6sUUV3amqXii3LHRpfZSvomFp9dLVfuHUqqheowdXa-v9MTqYqtLbk23toOfR8GlwHU_uxzeD_iTWNCU8pjmwqcgVJTnNU2ISDXxKRAqpybVijAttCBAQClRmbMYyw8FQRkPVBBjtoItN7sLVb431SzkvvLZlqSpbN16GUQ6MCEoDev4HndWNq8J2khCcZiLjkAWqt6F0OMo7O5ULV8yVW0nAcq1XrmXKtUz5ozdMnG1zm3xuzY7_9RkAvgHei9Ku_suTt6Orx03yN-37g0I</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Tapia‐Hernández, José Agustín</creator><creator>Del‐Toro‐Sánchez, Carmen Lizette</creator><creator>Cinco‐Moroyoqui, Francisco Javier</creator><creator>Ruiz‐Cruz, Saúl</creator><creator>Juárez, Josué</creator><creator>Castro‐Enríquez, Daniela Denisse</creator><creator>Barreras‐Urbina, Carlos Gregorio</creator><creator>López‐Ahumada, Guadalupe Amanda</creator><creator>Rodríguez‐Félix, Francisco</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7687-0633</orcidid></search><sort><creationdate>201904</creationdate><title>Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process</title><author>Tapia‐Hernández, José Agustín ; Del‐Toro‐Sánchez, Carmen Lizette ; Cinco‐Moroyoqui, Francisco Javier ; Ruiz‐Cruz, Saúl ; Juárez, Josué ; Castro‐Enríquez, Daniela Denisse ; Barreras‐Urbina, Carlos Gregorio ; López‐Ahumada, Guadalupe Amanda ; Rodríguez‐Félix, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3726-3b15f8ba32b3b72d4c16f28717dbca5568cd21218a1a9de959d61d3539d6c2153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acids</topic><topic>Antioxidants</topic><topic>biopolymer</topic><topic>Biopolymers</topic><topic>Electric potential</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrospraying</topic><topic>Environmental factors</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Gallic acid</topic><topic>High voltage</topic><topic>High voltages</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobicity</topic><topic>Low flow</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Parameters</topic><topic>Physicochemical properties</topic><topic>Properties (attributes)</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Viscosity</topic><topic>Voltage</topic><topic>Zein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tapia‐Hernández, José Agustín</creatorcontrib><creatorcontrib>Del‐Toro‐Sánchez, Carmen Lizette</creatorcontrib><creatorcontrib>Cinco‐Moroyoqui, Francisco Javier</creatorcontrib><creatorcontrib>Ruiz‐Cruz, Saúl</creatorcontrib><creatorcontrib>Juárez, Josué</creatorcontrib><creatorcontrib>Castro‐Enríquez, Daniela Denisse</creatorcontrib><creatorcontrib>Barreras‐Urbina, Carlos Gregorio</creatorcontrib><creatorcontrib>López‐Ahumada, Guadalupe Amanda</creatorcontrib><creatorcontrib>Rodríguez‐Félix, Francisco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tapia‐Hernández, José Agustín</au><au>Del‐Toro‐Sánchez, Carmen Lizette</au><au>Cinco‐Moroyoqui, Francisco Javier</au><au>Ruiz‐Cruz, Saúl</au><au>Juárez, Josué</au><au>Castro‐Enríquez, Daniela Denisse</au><au>Barreras‐Urbina, Carlos Gregorio</au><au>López‐Ahumada, Guadalupe Amanda</au><au>Rodríguez‐Félix, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2019-04</date><risdate>2019</risdate><volume>84</volume><issue>4</issue><spage>818</spage><epage>831</epage><pages>818-831</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><abstract>Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and characterize gallic acid‐loaded zein nanoparticles obtained by the electrospraying process to provide protection to gallic acid from environmental factors. Thus, it was related to the concentration of gallic acid in physicochemical and rheological properties of the electrosprayed solution, and also to equipment parameters, such as voltage, flow rate, and distance of the collector in morphology, and particle size. The physicochemical properties showed a relationship in the formation of a Taylor cone, in which at a low concentration of gallic acid (1% w/v), low viscosity (0.00464 ± 0.00001 Pa·s), and density (0.886 ± 0.00002 g/cm3), as well as high electrical conductivity (369 ± 4.3 µs/cm), forms a stable cone‐jet mode. The rheological properties and the Power Law model of the gallic acid‐zein electrosprayed solution demonstrated Newtonian behavior (n = 1). The morphology and size of the particle were dependent on the concentration of gallic acid. Electrosprayed parameters with high voltage (15 kV), low flow rate (0.1 mL/hr), and short distance (10 cm) exhibited a smaller diameter and spherical morphology. FT–IR showed interaction in the gallic acid‐loaded zein nanoparticle by hydrogen bonds. Therefore, the electrospraying process is a feasible technique for obtaining gallic acid‐loaded zein nanoparticles and providing potential protection to gallic acid from environmental factors.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30802954</pmid><doi>10.1111/1750-3841.14486</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7687-0633</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1147
ispartof Journal of food science, 2019-04, Vol.84 (4), p.818-831
issn 0022-1147
1750-3841
language eng
recordid cdi_proquest_miscellaneous_2186152833
source Wiley Online Library Journals Frontfile Complete
subjects Acids
Antioxidants
biopolymer
Biopolymers
Electric potential
Electrical conductivity
Electrical resistivity
Electrospraying
Environmental factors
Flow rates
Flow velocity
Gallic acid
High voltage
High voltages
Hydrogen bonding
Hydrogen bonds
Hydrophobicity
Low flow
Morphology
Nanoparticles
Parameters
Physicochemical properties
Properties (attributes)
Rheological properties
Rheology
Viscosity
Voltage
Zein
title Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gallic%20Acid%E2%80%90Loaded%20Zein%20Nanoparticles%20by%20Electrospraying%20Process&rft.jtitle=Journal%20of%20food%20science&rft.au=Tapia%E2%80%90Hern%C3%A1ndez,%20Jos%C3%A9%20Agust%C3%ADn&rft.date=2019-04&rft.volume=84&rft.issue=4&rft.spage=818&rft.epage=831&rft.pages=818-831&rft.issn=0022-1147&rft.eissn=1750-3841&rft_id=info:doi/10.1111/1750-3841.14486&rft_dat=%3Cproquest_cross%3E2186152833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207989619&rft_id=info:pmid/30802954&rfr_iscdi=true