Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications
Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid‐state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'‐bis(1‐ethylpropyl)perylene‐3,4,9,10‐tetracarboxyl...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2019-04, Vol.25 (24), p.6154-6161 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6161 |
---|---|
container_issue | 24 |
container_start_page | 6154 |
container_title | Chemistry : a European journal |
container_volume | 25 |
creator | Singh, Ranbir Shin, Sang‐Chul Lee, Hansol Kim, Min Shim, Jae Won Cho, Kilwon Lee, Jae‐Joon |
description | Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid‐state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'‐bis(1‐ethylpropyl)perylene‐3,4,9,10‐tetracarboxylic diimide (EP‐PDI) was mixed with a binary blend of PTB7 and PC71BM to fabricate an efficient ternary blend, which were in turn used to produce organic photovoltaic (OPV) devices well suited to indoor applications (PTB7=poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl}), PC71BM=[6,6]‐phenyl‐C71‐butyric acid methyl ester). We varied the PC71BM/EP‐PDI weight ratio to investigate the influence of EP‐PDI on the optical, electrical, and morphological properties of the PTB7:PC71BM:EP‐PDI ternary blend. Compared with the reference PTB7:PC71BM binary blend, the ternary blends showed strong optical absorption in the wavelength range in which the spectra of indoor LED lamps show their strongest peaks. The addition of EP‐PDI to the binary blend was found to play an important role in altering the morphology of the blend in such a way as to facilitate charge transport in the resulting ternary blend. Apparently, as a result, the optimal PTB7:PC71BM:EP‐PDI‐based inverted OPV device exhibited a power conversion efficiency (PCE) of 15.68 %, a fill factor (FF) of 68.5 %, and short‐circuit current density (JSC) of 56.7 μA cm−2 under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.
An efficient ternary blend system for application in indoor organic photovoltaic (OPV) devices has been developed. The ternary blend system PTB7:PC71BM:EP‐PDI was designed to produce optimal OPV devices under indoor light‐emitting‐diode (LED) light conditions. The campion OPV device exhibited a high power conversion efficiency (PCE) of 15.68 % under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions. |
doi_str_mv | 10.1002/chem.201900041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2185876092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213189299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-b5ea7587ef65c1c3a16271744365505792b4ad804089f783c0dea356f099e9a43</originalsourceid><addsrcrecordid>eNqFkcFuEzEURS0Eomlh22U1Ehs2E96zxzP2soS0qVTUSi3rkeN5k7hMxsGeFGXHJ_Qb-yV1SCkSG1ZPTzr3LO5l7BhhjAD8k13SaswBNQAU-IqNUHLMRVXK12wEuqjyUgp9wA5jvEuILoV4yw4EKECFasS-31LoTdhmnzvqm-xmCGagxTZrfchO7dLRvesX2cwtlo-_HqZt66yj3m6zq7AwvbPZ9dIP_t53g0nPl0Rbir_DF33jd471unPWDM738R1705ou0vvne8S-nU1vJ7P88ur8YnJ6mdsCAfO5JFNJVVFbSotWGCx5hVVRiFJKkJXm88I0CgpQuq2UsNCQEbJsQWvSphBH7OPeuw7-x4biUK9ctNR1pie_iTVHlfQlaJ7QD_-gd36TCukSxVGg0lzrRI33lA0-xkBtvQ5ulVqrEerdDPVuhvplhhQ4edZu5itqXvA_vSdA74GfrqPtf3T1ZDb9-lf-BOpmlAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213189299</pqid></control><display><type>article</type><title>Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Singh, Ranbir ; Shin, Sang‐Chul ; Lee, Hansol ; Kim, Min ; Shim, Jae Won ; Cho, Kilwon ; Lee, Jae‐Joon</creator><creatorcontrib>Singh, Ranbir ; Shin, Sang‐Chul ; Lee, Hansol ; Kim, Min ; Shim, Jae Won ; Cho, Kilwon ; Lee, Jae‐Joon</creatorcontrib><description>Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid‐state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'‐bis(1‐ethylpropyl)perylene‐3,4,9,10‐tetracarboxylic diimide (EP‐PDI) was mixed with a binary blend of PTB7 and PC71BM to fabricate an efficient ternary blend, which were in turn used to produce organic photovoltaic (OPV) devices well suited to indoor applications (PTB7=poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl}), PC71BM=[6,6]‐phenyl‐C71‐butyric acid methyl ester). We varied the PC71BM/EP‐PDI weight ratio to investigate the influence of EP‐PDI on the optical, electrical, and morphological properties of the PTB7:PC71BM:EP‐PDI ternary blend. Compared with the reference PTB7:PC71BM binary blend, the ternary blends showed strong optical absorption in the wavelength range in which the spectra of indoor LED lamps show their strongest peaks. The addition of EP‐PDI to the binary blend was found to play an important role in altering the morphology of the blend in such a way as to facilitate charge transport in the resulting ternary blend. Apparently, as a result, the optimal PTB7:PC71BM:EP‐PDI‐based inverted OPV device exhibited a power conversion efficiency (PCE) of 15.68 %, a fill factor (FF) of 68.5 %, and short‐circuit current density (JSC) of 56.7 μA cm−2 under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.
An efficient ternary blend system for application in indoor organic photovoltaic (OPV) devices has been developed. The ternary blend system PTB7:PC71BM:EP‐PDI was designed to produce optimal OPV devices under indoor light‐emitting‐diode (LED) light conditions. The campion OPV device exhibited a high power conversion efficiency (PCE) of 15.68 % under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201900041</identifier><identifier>PMID: 30801818</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Absorptivity ; Butyric acid ; Carbonyls ; Charge transport ; Chemistry ; Circuits ; Diimide ; electrochemistry ; energy conversion ; Energy conversion efficiency ; fused ring systems ; Indoor environments ; Light emitting diodes ; Morphology ; Optical properties ; organic photovoltaic devices ; photophysics ; Photovoltaic cells ; Photovoltaics ; Solar cells ; Thin films</subject><ispartof>Chemistry : a European journal, 2019-04, Vol.25 (24), p.6154-6161</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-b5ea7587ef65c1c3a16271744365505792b4ad804089f783c0dea356f099e9a43</citedby><cites>FETCH-LOGICAL-c4101-b5ea7587ef65c1c3a16271744365505792b4ad804089f783c0dea356f099e9a43</cites><orcidid>0000-0001-8387-160X ; 0000-0002-5659-478X ; 0000-0001-8966-0336 ; 0000-0003-3524-2360 ; 0000-0003-0321-3629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201900041$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201900041$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30801818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Ranbir</creatorcontrib><creatorcontrib>Shin, Sang‐Chul</creatorcontrib><creatorcontrib>Lee, Hansol</creatorcontrib><creatorcontrib>Kim, Min</creatorcontrib><creatorcontrib>Shim, Jae Won</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Lee, Jae‐Joon</creatorcontrib><title>Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid‐state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'‐bis(1‐ethylpropyl)perylene‐3,4,9,10‐tetracarboxylic diimide (EP‐PDI) was mixed with a binary blend of PTB7 and PC71BM to fabricate an efficient ternary blend, which were in turn used to produce organic photovoltaic (OPV) devices well suited to indoor applications (PTB7=poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl}), PC71BM=[6,6]‐phenyl‐C71‐butyric acid methyl ester). We varied the PC71BM/EP‐PDI weight ratio to investigate the influence of EP‐PDI on the optical, electrical, and morphological properties of the PTB7:PC71BM:EP‐PDI ternary blend. Compared with the reference PTB7:PC71BM binary blend, the ternary blends showed strong optical absorption in the wavelength range in which the spectra of indoor LED lamps show their strongest peaks. The addition of EP‐PDI to the binary blend was found to play an important role in altering the morphology of the blend in such a way as to facilitate charge transport in the resulting ternary blend. Apparently, as a result, the optimal PTB7:PC71BM:EP‐PDI‐based inverted OPV device exhibited a power conversion efficiency (PCE) of 15.68 %, a fill factor (FF) of 68.5 %, and short‐circuit current density (JSC) of 56.7 μA cm−2 under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.
An efficient ternary blend system for application in indoor organic photovoltaic (OPV) devices has been developed. The ternary blend system PTB7:PC71BM:EP‐PDI was designed to produce optimal OPV devices under indoor light‐emitting‐diode (LED) light conditions. The campion OPV device exhibited a high power conversion efficiency (PCE) of 15.68 % under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.</description><subject>Absorption</subject><subject>Absorptivity</subject><subject>Butyric acid</subject><subject>Carbonyls</subject><subject>Charge transport</subject><subject>Chemistry</subject><subject>Circuits</subject><subject>Diimide</subject><subject>electrochemistry</subject><subject>energy conversion</subject><subject>Energy conversion efficiency</subject><subject>fused ring systems</subject><subject>Indoor environments</subject><subject>Light emitting diodes</subject><subject>Morphology</subject><subject>Optical properties</subject><subject>organic photovoltaic devices</subject><subject>photophysics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Solar cells</subject><subject>Thin films</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEURS0Eomlh22U1Ehs2E96zxzP2soS0qVTUSi3rkeN5k7hMxsGeFGXHJ_Qb-yV1SCkSG1ZPTzr3LO5l7BhhjAD8k13SaswBNQAU-IqNUHLMRVXK12wEuqjyUgp9wA5jvEuILoV4yw4EKECFasS-31LoTdhmnzvqm-xmCGagxTZrfchO7dLRvesX2cwtlo-_HqZt66yj3m6zq7AwvbPZ9dIP_t53g0nPl0Rbir_DF33jd471unPWDM738R1705ou0vvne8S-nU1vJ7P88ur8YnJ6mdsCAfO5JFNJVVFbSotWGCx5hVVRiFJKkJXm88I0CgpQuq2UsNCQEbJsQWvSphBH7OPeuw7-x4biUK9ctNR1pie_iTVHlfQlaJ7QD_-gd36TCukSxVGg0lzrRI33lA0-xkBtvQ5ulVqrEerdDPVuhvplhhQ4edZu5itqXvA_vSdA74GfrqPtf3T1ZDb9-lf-BOpmlAs</recordid><startdate>20190426</startdate><enddate>20190426</enddate><creator>Singh, Ranbir</creator><creator>Shin, Sang‐Chul</creator><creator>Lee, Hansol</creator><creator>Kim, Min</creator><creator>Shim, Jae Won</creator><creator>Cho, Kilwon</creator><creator>Lee, Jae‐Joon</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8387-160X</orcidid><orcidid>https://orcid.org/0000-0002-5659-478X</orcidid><orcidid>https://orcid.org/0000-0001-8966-0336</orcidid><orcidid>https://orcid.org/0000-0003-3524-2360</orcidid><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></search><sort><creationdate>20190426</creationdate><title>Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications</title><author>Singh, Ranbir ; Shin, Sang‐Chul ; Lee, Hansol ; Kim, Min ; Shim, Jae Won ; Cho, Kilwon ; Lee, Jae‐Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-b5ea7587ef65c1c3a16271744365505792b4ad804089f783c0dea356f099e9a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Absorptivity</topic><topic>Butyric acid</topic><topic>Carbonyls</topic><topic>Charge transport</topic><topic>Chemistry</topic><topic>Circuits</topic><topic>Diimide</topic><topic>electrochemistry</topic><topic>energy conversion</topic><topic>Energy conversion efficiency</topic><topic>fused ring systems</topic><topic>Indoor environments</topic><topic>Light emitting diodes</topic><topic>Morphology</topic><topic>Optical properties</topic><topic>organic photovoltaic devices</topic><topic>photophysics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Solar cells</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Ranbir</creatorcontrib><creatorcontrib>Shin, Sang‐Chul</creatorcontrib><creatorcontrib>Lee, Hansol</creatorcontrib><creatorcontrib>Kim, Min</creatorcontrib><creatorcontrib>Shim, Jae Won</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Lee, Jae‐Joon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Ranbir</au><au>Shin, Sang‐Chul</au><au>Lee, Hansol</au><au>Kim, Min</au><au>Shim, Jae Won</au><au>Cho, Kilwon</au><au>Lee, Jae‐Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2019-04-26</date><risdate>2019</risdate><volume>25</volume><issue>24</issue><spage>6154</spage><epage>6161</epage><pages>6154-6161</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid‐state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'‐bis(1‐ethylpropyl)perylene‐3,4,9,10‐tetracarboxylic diimide (EP‐PDI) was mixed with a binary blend of PTB7 and PC71BM to fabricate an efficient ternary blend, which were in turn used to produce organic photovoltaic (OPV) devices well suited to indoor applications (PTB7=poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl}), PC71BM=[6,6]‐phenyl‐C71‐butyric acid methyl ester). We varied the PC71BM/EP‐PDI weight ratio to investigate the influence of EP‐PDI on the optical, electrical, and morphological properties of the PTB7:PC71BM:EP‐PDI ternary blend. Compared with the reference PTB7:PC71BM binary blend, the ternary blends showed strong optical absorption in the wavelength range in which the spectra of indoor LED lamps show their strongest peaks. The addition of EP‐PDI to the binary blend was found to play an important role in altering the morphology of the blend in such a way as to facilitate charge transport in the resulting ternary blend. Apparently, as a result, the optimal PTB7:PC71BM:EP‐PDI‐based inverted OPV device exhibited a power conversion efficiency (PCE) of 15.68 %, a fill factor (FF) of 68.5 %, and short‐circuit current density (JSC) of 56.7 μA cm−2 under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.
An efficient ternary blend system for application in indoor organic photovoltaic (OPV) devices has been developed. The ternary blend system PTB7:PC71BM:EP‐PDI was designed to produce optimal OPV devices under indoor light‐emitting‐diode (LED) light conditions. The campion OPV device exhibited a high power conversion efficiency (PCE) of 15.68 % under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30801818</pmid><doi>10.1002/chem.201900041</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8387-160X</orcidid><orcidid>https://orcid.org/0000-0002-5659-478X</orcidid><orcidid>https://orcid.org/0000-0001-8966-0336</orcidid><orcidid>https://orcid.org/0000-0003-3524-2360</orcidid><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2019-04, Vol.25 (24), p.6154-6161 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2185876092 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorption Absorptivity Butyric acid Carbonyls Charge transport Chemistry Circuits Diimide electrochemistry energy conversion Energy conversion efficiency fused ring systems Indoor environments Light emitting diodes Morphology Optical properties organic photovoltaic devices photophysics Photovoltaic cells Photovoltaics Solar cells Thin films |
title | Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ternary%20Blend%20Strategy%20for%20Achieving%20High%E2%80%90Efficiency%20Organic%20Photovoltaic%20Devices%20for%20Indoor%20Applications&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Singh,%20Ranbir&rft.date=2019-04-26&rft.volume=25&rft.issue=24&rft.spage=6154&rft.epage=6161&rft.pages=6154-6161&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201900041&rft_dat=%3Cproquest_cross%3E2213189299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2213189299&rft_id=info:pmid/30801818&rfr_iscdi=true |