Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications

Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid‐state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'‐bis(1‐ethylpropyl)perylene‐3,4,9,10‐tetracarboxyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2019-04, Vol.25 (24), p.6154-6161
Hauptverfasser: Singh, Ranbir, Shin, Sang‐Chul, Lee, Hansol, Kim, Min, Shim, Jae Won, Cho, Kilwon, Lee, Jae‐Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6161
container_issue 24
container_start_page 6154
container_title Chemistry : a European journal
container_volume 25
creator Singh, Ranbir
Shin, Sang‐Chul
Lee, Hansol
Kim, Min
Shim, Jae Won
Cho, Kilwon
Lee, Jae‐Joon
description Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid‐state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'‐bis(1‐ethylpropyl)perylene‐3,4,9,10‐tetracarboxylic diimide (EP‐PDI) was mixed with a binary blend of PTB7 and PC71BM to fabricate an efficient ternary blend, which were in turn used to produce organic photovoltaic (OPV) devices well suited to indoor applications (PTB7=poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl}), PC71BM=[6,6]‐phenyl‐C71‐butyric acid methyl ester). We varied the PC71BM/EP‐PDI weight ratio to investigate the influence of EP‐PDI on the optical, electrical, and morphological properties of the PTB7:PC71BM:EP‐PDI ternary blend. Compared with the reference PTB7:PC71BM binary blend, the ternary blends showed strong optical absorption in the wavelength range in which the spectra of indoor LED lamps show their strongest peaks. The addition of EP‐PDI to the binary blend was found to play an important role in altering the morphology of the blend in such a way as to facilitate charge transport in the resulting ternary blend. Apparently, as a result, the optimal PTB7:PC71BM:EP‐PDI‐based inverted OPV device exhibited a power conversion efficiency (PCE) of 15.68 %, a fill factor (FF) of 68.5 %, and short‐circuit current density (JSC) of 56.7 μA cm−2 under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions. An efficient ternary blend system for application in indoor organic photovoltaic (OPV) devices has been developed. The ternary blend system PTB7:PC71BM:EP‐PDI was designed to produce optimal OPV devices under indoor light‐emitting‐diode (LED) light conditions. The campion OPV device exhibited a high power conversion efficiency (PCE) of 15.68 % under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.
doi_str_mv 10.1002/chem.201900041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2185876092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213189299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-b5ea7587ef65c1c3a16271744365505792b4ad804089f783c0dea356f099e9a43</originalsourceid><addsrcrecordid>eNqFkcFuEzEURS0Eomlh22U1Ehs2E96zxzP2soS0qVTUSi3rkeN5k7hMxsGeFGXHJ_Qb-yV1SCkSG1ZPTzr3LO5l7BhhjAD8k13SaswBNQAU-IqNUHLMRVXK12wEuqjyUgp9wA5jvEuILoV4yw4EKECFasS-31LoTdhmnzvqm-xmCGagxTZrfchO7dLRvesX2cwtlo-_HqZt66yj3m6zq7AwvbPZ9dIP_t53g0nPl0Rbir_DF33jd471unPWDM738R1705ou0vvne8S-nU1vJ7P88ur8YnJ6mdsCAfO5JFNJVVFbSotWGCx5hVVRiFJKkJXm88I0CgpQuq2UsNCQEbJsQWvSphBH7OPeuw7-x4biUK9ctNR1pie_iTVHlfQlaJ7QD_-gd36TCukSxVGg0lzrRI33lA0-xkBtvQ5ulVqrEerdDPVuhvplhhQ4edZu5itqXvA_vSdA74GfrqPtf3T1ZDb9-lf-BOpmlAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213189299</pqid></control><display><type>article</type><title>Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Singh, Ranbir ; Shin, Sang‐Chul ; Lee, Hansol ; Kim, Min ; Shim, Jae Won ; Cho, Kilwon ; Lee, Jae‐Joon</creator><creatorcontrib>Singh, Ranbir ; Shin, Sang‐Chul ; Lee, Hansol ; Kim, Min ; Shim, Jae Won ; Cho, Kilwon ; Lee, Jae‐Joon</creatorcontrib><description>Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid‐state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'‐bis(1‐ethylpropyl)perylene‐3,4,9,10‐tetracarboxylic diimide (EP‐PDI) was mixed with a binary blend of PTB7 and PC71BM to fabricate an efficient ternary blend, which were in turn used to produce organic photovoltaic (OPV) devices well suited to indoor applications (PTB7=poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl}), PC71BM=[6,6]‐phenyl‐C71‐butyric acid methyl ester). We varied the PC71BM/EP‐PDI weight ratio to investigate the influence of EP‐PDI on the optical, electrical, and morphological properties of the PTB7:PC71BM:EP‐PDI ternary blend. Compared with the reference PTB7:PC71BM binary blend, the ternary blends showed strong optical absorption in the wavelength range in which the spectra of indoor LED lamps show their strongest peaks. The addition of EP‐PDI to the binary blend was found to play an important role in altering the morphology of the blend in such a way as to facilitate charge transport in the resulting ternary blend. Apparently, as a result, the optimal PTB7:PC71BM:EP‐PDI‐based inverted OPV device exhibited a power conversion efficiency (PCE) of 15.68 %, a fill factor (FF) of 68.5 %, and short‐circuit current density (JSC) of 56.7 μA cm−2 under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions. An efficient ternary blend system for application in indoor organic photovoltaic (OPV) devices has been developed. The ternary blend system PTB7:PC71BM:EP‐PDI was designed to produce optimal OPV devices under indoor light‐emitting‐diode (LED) light conditions. The campion OPV device exhibited a high power conversion efficiency (PCE) of 15.68 % under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201900041</identifier><identifier>PMID: 30801818</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Absorptivity ; Butyric acid ; Carbonyls ; Charge transport ; Chemistry ; Circuits ; Diimide ; electrochemistry ; energy conversion ; Energy conversion efficiency ; fused ring systems ; Indoor environments ; Light emitting diodes ; Morphology ; Optical properties ; organic photovoltaic devices ; photophysics ; Photovoltaic cells ; Photovoltaics ; Solar cells ; Thin films</subject><ispartof>Chemistry : a European journal, 2019-04, Vol.25 (24), p.6154-6161</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-b5ea7587ef65c1c3a16271744365505792b4ad804089f783c0dea356f099e9a43</citedby><cites>FETCH-LOGICAL-c4101-b5ea7587ef65c1c3a16271744365505792b4ad804089f783c0dea356f099e9a43</cites><orcidid>0000-0001-8387-160X ; 0000-0002-5659-478X ; 0000-0001-8966-0336 ; 0000-0003-3524-2360 ; 0000-0003-0321-3629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201900041$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201900041$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30801818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Ranbir</creatorcontrib><creatorcontrib>Shin, Sang‐Chul</creatorcontrib><creatorcontrib>Lee, Hansol</creatorcontrib><creatorcontrib>Kim, Min</creatorcontrib><creatorcontrib>Shim, Jae Won</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Lee, Jae‐Joon</creatorcontrib><title>Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid‐state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'‐bis(1‐ethylpropyl)perylene‐3,4,9,10‐tetracarboxylic diimide (EP‐PDI) was mixed with a binary blend of PTB7 and PC71BM to fabricate an efficient ternary blend, which were in turn used to produce organic photovoltaic (OPV) devices well suited to indoor applications (PTB7=poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl}), PC71BM=[6,6]‐phenyl‐C71‐butyric acid methyl ester). We varied the PC71BM/EP‐PDI weight ratio to investigate the influence of EP‐PDI on the optical, electrical, and morphological properties of the PTB7:PC71BM:EP‐PDI ternary blend. Compared with the reference PTB7:PC71BM binary blend, the ternary blends showed strong optical absorption in the wavelength range in which the spectra of indoor LED lamps show their strongest peaks. The addition of EP‐PDI to the binary blend was found to play an important role in altering the morphology of the blend in such a way as to facilitate charge transport in the resulting ternary blend. Apparently, as a result, the optimal PTB7:PC71BM:EP‐PDI‐based inverted OPV device exhibited a power conversion efficiency (PCE) of 15.68 %, a fill factor (FF) of 68.5 %, and short‐circuit current density (JSC) of 56.7 μA cm−2 under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions. An efficient ternary blend system for application in indoor organic photovoltaic (OPV) devices has been developed. The ternary blend system PTB7:PC71BM:EP‐PDI was designed to produce optimal OPV devices under indoor light‐emitting‐diode (LED) light conditions. The campion OPV device exhibited a high power conversion efficiency (PCE) of 15.68 % under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.</description><subject>Absorption</subject><subject>Absorptivity</subject><subject>Butyric acid</subject><subject>Carbonyls</subject><subject>Charge transport</subject><subject>Chemistry</subject><subject>Circuits</subject><subject>Diimide</subject><subject>electrochemistry</subject><subject>energy conversion</subject><subject>Energy conversion efficiency</subject><subject>fused ring systems</subject><subject>Indoor environments</subject><subject>Light emitting diodes</subject><subject>Morphology</subject><subject>Optical properties</subject><subject>organic photovoltaic devices</subject><subject>photophysics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Solar cells</subject><subject>Thin films</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEURS0Eomlh22U1Ehs2E96zxzP2soS0qVTUSi3rkeN5k7hMxsGeFGXHJ_Qb-yV1SCkSG1ZPTzr3LO5l7BhhjAD8k13SaswBNQAU-IqNUHLMRVXK12wEuqjyUgp9wA5jvEuILoV4yw4EKECFasS-31LoTdhmnzvqm-xmCGagxTZrfchO7dLRvesX2cwtlo-_HqZt66yj3m6zq7AwvbPZ9dIP_t53g0nPl0Rbir_DF33jd471unPWDM738R1705ou0vvne8S-nU1vJ7P88ur8YnJ6mdsCAfO5JFNJVVFbSotWGCx5hVVRiFJKkJXm88I0CgpQuq2UsNCQEbJsQWvSphBH7OPeuw7-x4biUK9ctNR1pie_iTVHlfQlaJ7QD_-gd36TCukSxVGg0lzrRI33lA0-xkBtvQ5ulVqrEerdDPVuhvplhhQ4edZu5itqXvA_vSdA74GfrqPtf3T1ZDb9-lf-BOpmlAs</recordid><startdate>20190426</startdate><enddate>20190426</enddate><creator>Singh, Ranbir</creator><creator>Shin, Sang‐Chul</creator><creator>Lee, Hansol</creator><creator>Kim, Min</creator><creator>Shim, Jae Won</creator><creator>Cho, Kilwon</creator><creator>Lee, Jae‐Joon</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8387-160X</orcidid><orcidid>https://orcid.org/0000-0002-5659-478X</orcidid><orcidid>https://orcid.org/0000-0001-8966-0336</orcidid><orcidid>https://orcid.org/0000-0003-3524-2360</orcidid><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></search><sort><creationdate>20190426</creationdate><title>Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications</title><author>Singh, Ranbir ; Shin, Sang‐Chul ; Lee, Hansol ; Kim, Min ; Shim, Jae Won ; Cho, Kilwon ; Lee, Jae‐Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-b5ea7587ef65c1c3a16271744365505792b4ad804089f783c0dea356f099e9a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Absorptivity</topic><topic>Butyric acid</topic><topic>Carbonyls</topic><topic>Charge transport</topic><topic>Chemistry</topic><topic>Circuits</topic><topic>Diimide</topic><topic>electrochemistry</topic><topic>energy conversion</topic><topic>Energy conversion efficiency</topic><topic>fused ring systems</topic><topic>Indoor environments</topic><topic>Light emitting diodes</topic><topic>Morphology</topic><topic>Optical properties</topic><topic>organic photovoltaic devices</topic><topic>photophysics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Solar cells</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Ranbir</creatorcontrib><creatorcontrib>Shin, Sang‐Chul</creatorcontrib><creatorcontrib>Lee, Hansol</creatorcontrib><creatorcontrib>Kim, Min</creatorcontrib><creatorcontrib>Shim, Jae Won</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Lee, Jae‐Joon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Ranbir</au><au>Shin, Sang‐Chul</au><au>Lee, Hansol</au><au>Kim, Min</au><au>Shim, Jae Won</au><au>Cho, Kilwon</au><au>Lee, Jae‐Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2019-04-26</date><risdate>2019</risdate><volume>25</volume><issue>24</issue><spage>6154</spage><epage>6161</epage><pages>6154-6161</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid‐state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'‐bis(1‐ethylpropyl)perylene‐3,4,9,10‐tetracarboxylic diimide (EP‐PDI) was mixed with a binary blend of PTB7 and PC71BM to fabricate an efficient ternary blend, which were in turn used to produce organic photovoltaic (OPV) devices well suited to indoor applications (PTB7=poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl}), PC71BM=[6,6]‐phenyl‐C71‐butyric acid methyl ester). We varied the PC71BM/EP‐PDI weight ratio to investigate the influence of EP‐PDI on the optical, electrical, and morphological properties of the PTB7:PC71BM:EP‐PDI ternary blend. Compared with the reference PTB7:PC71BM binary blend, the ternary blends showed strong optical absorption in the wavelength range in which the spectra of indoor LED lamps show their strongest peaks. The addition of EP‐PDI to the binary blend was found to play an important role in altering the morphology of the blend in such a way as to facilitate charge transport in the resulting ternary blend. Apparently, as a result, the optimal PTB7:PC71BM:EP‐PDI‐based inverted OPV device exhibited a power conversion efficiency (PCE) of 15.68 %, a fill factor (FF) of 68.5 %, and short‐circuit current density (JSC) of 56.7 μA cm−2 under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions. An efficient ternary blend system for application in indoor organic photovoltaic (OPV) devices has been developed. The ternary blend system PTB7:PC71BM:EP‐PDI was designed to produce optimal OPV devices under indoor light‐emitting‐diode (LED) light conditions. The campion OPV device exhibited a high power conversion efficiency (PCE) of 15.68 % under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30801818</pmid><doi>10.1002/chem.201900041</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8387-160X</orcidid><orcidid>https://orcid.org/0000-0002-5659-478X</orcidid><orcidid>https://orcid.org/0000-0001-8966-0336</orcidid><orcidid>https://orcid.org/0000-0003-3524-2360</orcidid><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2019-04, Vol.25 (24), p.6154-6161
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2185876092
source Wiley Online Library Journals Frontfile Complete
subjects Absorption
Absorptivity
Butyric acid
Carbonyls
Charge transport
Chemistry
Circuits
Diimide
electrochemistry
energy conversion
Energy conversion efficiency
fused ring systems
Indoor environments
Light emitting diodes
Morphology
Optical properties
organic photovoltaic devices
photophysics
Photovoltaic cells
Photovoltaics
Solar cells
Thin films
title Ternary Blend Strategy for Achieving High‐Efficiency Organic Photovoltaic Devices for Indoor Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ternary%20Blend%20Strategy%20for%20Achieving%20High%E2%80%90Efficiency%20Organic%20Photovoltaic%20Devices%20for%20Indoor%20Applications&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Singh,%20Ranbir&rft.date=2019-04-26&rft.volume=25&rft.issue=24&rft.spage=6154&rft.epage=6161&rft.pages=6154-6161&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201900041&rft_dat=%3Cproquest_cross%3E2213189299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2213189299&rft_id=info:pmid/30801818&rfr_iscdi=true