Acquiring Control: The Evolution of Stomatal Signalling Pathways
In vascular plants, stomata balance two opposing functions: they open to facilitate CO2 uptake and close to prevent excessive water loss. Here, we discuss the evolution of three major signalling pathways that are known to control stomatal movements in angiosperms in response to light, CO2, and absci...
Gespeichert in:
Veröffentlicht in: | Trends in plant science 2019-04, Vol.24 (4), p.342-351 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | 4 |
container_start_page | 342 |
container_title | Trends in plant science |
container_volume | 24 |
creator | Sussmilch, Frances C. Schultz, Jörg Hedrich, Rainer Roelfsema, M. Rob G. |
description | In vascular plants, stomata balance two opposing functions: they open to facilitate CO2 uptake and close to prevent excessive water loss. Here, we discuss the evolution of three major signalling pathways that are known to control stomatal movements in angiosperms in response to light, CO2, and abscisic acid (ABA). We examine the evolutionary origins of key signalling genes involved in these pathways, and compare their expression patterns between an angiosperm and moss. We propose that variation in stomatal sensitivity to stimuli between plant groups are rooted in differences in: (i) gene presence/absence, (ii) specificity of gene spatial expression pattern, and (iii) protein characteristics and functional interactions.
Recent findings reveal that stomata function differently in mosses and hornworts than in vascular plants, with bryophyte stomata promoting rather than preventing water loss.
Important signalling genes that control stomatal opening and closure in response to changes in a plant’s environment have been characterised in angiosperms.
Less is known about the evolutionary origins of these signalling pathways, and whether or not they are also present in bryophytes.
Here, we review recent findings in this field, and further examine the evolutionary origins and expression patterns of key signalling genes, using newly available plant genomic and transcriptomic resources. |
doi_str_mv | 10.1016/j.tplants.2019.01.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2185872116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1360138519300147</els_id><sourcerecordid>2212702956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-966ad843d92485900a5186f005a622f18130feca27bd03f11271664913c5aa053</originalsourceid><addsrcrecordid>eNqFkD1v2zAQhokiQZ2P_oQWArJkkXpHihTVpQmMJC0QIAHizgRNUQkNWbRJKkX-fWnY6dCl093wvO8dHkI-I1QIKL6uqrQZ9JhiRQHbCrACoB_ICcpGljVr6FHemYASmeQzchrjCgAalOIjmTFo2kZIfkKurs12csGNz8Xcjyn44VuxeLHFzasfpuT8WPi-eEp-rZMeiif3POph2NGPOr381m_xnBz3eoj202GekV-3N4v5j_L-4e7n_Pq-NHUNqWyF0J2sWdfSWvIWQPP8Sg_AtaC0R4kMems0bZYdsB6RNihE3SIzXGvg7Ixc7ns3wW8nG5Nau2jskB1YP0VFUXLZUESR0Yt_0JWfQn48UzQXA235juJ7ygQfY7C92gS31uFNIaidYrVSB8Vqp1gBqqw4574c2qfl2nZ_U-9OM_B9D9is49XZoKJxdjS2c8GapDrv_nPiDxABjQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212702956</pqid></control><display><type>article</type><title>Acquiring Control: The Evolution of Stomatal Signalling Pathways</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Sussmilch, Frances C. ; Schultz, Jörg ; Hedrich, Rainer ; Roelfsema, M. Rob G.</creator><creatorcontrib>Sussmilch, Frances C. ; Schultz, Jörg ; Hedrich, Rainer ; Roelfsema, M. Rob G.</creatorcontrib><description>In vascular plants, stomata balance two opposing functions: they open to facilitate CO2 uptake and close to prevent excessive water loss. Here, we discuss the evolution of three major signalling pathways that are known to control stomatal movements in angiosperms in response to light, CO2, and abscisic acid (ABA). We examine the evolutionary origins of key signalling genes involved in these pathways, and compare their expression patterns between an angiosperm and moss. We propose that variation in stomatal sensitivity to stimuli between plant groups are rooted in differences in: (i) gene presence/absence, (ii) specificity of gene spatial expression pattern, and (iii) protein characteristics and functional interactions.
Recent findings reveal that stomata function differently in mosses and hornworts than in vascular plants, with bryophyte stomata promoting rather than preventing water loss.
Important signalling genes that control stomatal opening and closure in response to changes in a plant’s environment have been characterised in angiosperms.
Less is known about the evolutionary origins of these signalling pathways, and whether or not they are also present in bryophytes.
Here, we review recent findings in this field, and further examine the evolutionary origins and expression patterns of key signalling genes, using newly available plant genomic and transcriptomic resources.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2019.01.002</identifier><identifier>PMID: 30797685</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Abscisic Acid ; abscisic acid (ABA) ; Angiosperms ; Biological evolution ; Carbon dioxide ; CO2 ; Evolution ; Gene expression ; light ; Magnoliopsida ; Plant Stomata ; Plants ; Proteins ; Signal transduction ; Signaling ; signalling pathway ; Stomata ; Water ; Water loss</subject><ispartof>Trends in plant science, 2019-04, Vol.24 (4), p.342-351</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-966ad843d92485900a5186f005a622f18130feca27bd03f11271664913c5aa053</citedby><cites>FETCH-LOGICAL-c440t-966ad843d92485900a5186f005a622f18130feca27bd03f11271664913c5aa053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tplants.2019.01.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30797685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sussmilch, Frances C.</creatorcontrib><creatorcontrib>Schultz, Jörg</creatorcontrib><creatorcontrib>Hedrich, Rainer</creatorcontrib><creatorcontrib>Roelfsema, M. Rob G.</creatorcontrib><title>Acquiring Control: The Evolution of Stomatal Signalling Pathways</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>In vascular plants, stomata balance two opposing functions: they open to facilitate CO2 uptake and close to prevent excessive water loss. Here, we discuss the evolution of three major signalling pathways that are known to control stomatal movements in angiosperms in response to light, CO2, and abscisic acid (ABA). We examine the evolutionary origins of key signalling genes involved in these pathways, and compare their expression patterns between an angiosperm and moss. We propose that variation in stomatal sensitivity to stimuli between plant groups are rooted in differences in: (i) gene presence/absence, (ii) specificity of gene spatial expression pattern, and (iii) protein characteristics and functional interactions.
Recent findings reveal that stomata function differently in mosses and hornworts than in vascular plants, with bryophyte stomata promoting rather than preventing water loss.
Important signalling genes that control stomatal opening and closure in response to changes in a plant’s environment have been characterised in angiosperms.
Less is known about the evolutionary origins of these signalling pathways, and whether or not they are also present in bryophytes.
Here, we review recent findings in this field, and further examine the evolutionary origins and expression patterns of key signalling genes, using newly available plant genomic and transcriptomic resources.</description><subject>Abscisic Acid</subject><subject>abscisic acid (ABA)</subject><subject>Angiosperms</subject><subject>Biological evolution</subject><subject>Carbon dioxide</subject><subject>CO2</subject><subject>Evolution</subject><subject>Gene expression</subject><subject>light</subject><subject>Magnoliopsida</subject><subject>Plant Stomata</subject><subject>Plants</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>signalling pathway</subject><subject>Stomata</subject><subject>Water</subject><subject>Water loss</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1v2zAQhokiQZ2P_oQWArJkkXpHihTVpQmMJC0QIAHizgRNUQkNWbRJKkX-fWnY6dCl093wvO8dHkI-I1QIKL6uqrQZ9JhiRQHbCrACoB_ICcpGljVr6FHemYASmeQzchrjCgAalOIjmTFo2kZIfkKurs12csGNz8Xcjyn44VuxeLHFzasfpuT8WPi-eEp-rZMeiif3POph2NGPOr381m_xnBz3eoj202GekV-3N4v5j_L-4e7n_Pq-NHUNqWyF0J2sWdfSWvIWQPP8Sg_AtaC0R4kMems0bZYdsB6RNihE3SIzXGvg7Ixc7ns3wW8nG5Nau2jskB1YP0VFUXLZUESR0Yt_0JWfQn48UzQXA235juJ7ygQfY7C92gS31uFNIaidYrVSB8Vqp1gBqqw4574c2qfl2nZ_U-9OM_B9D9is49XZoKJxdjS2c8GapDrv_nPiDxABjQc</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Sussmilch, Frances C.</creator><creator>Schultz, Jörg</creator><creator>Hedrich, Rainer</creator><creator>Roelfsema, M. Rob G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201904</creationdate><title>Acquiring Control: The Evolution of Stomatal Signalling Pathways</title><author>Sussmilch, Frances C. ; Schultz, Jörg ; Hedrich, Rainer ; Roelfsema, M. Rob G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-966ad843d92485900a5186f005a622f18130feca27bd03f11271664913c5aa053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abscisic Acid</topic><topic>abscisic acid (ABA)</topic><topic>Angiosperms</topic><topic>Biological evolution</topic><topic>Carbon dioxide</topic><topic>CO2</topic><topic>Evolution</topic><topic>Gene expression</topic><topic>light</topic><topic>Magnoliopsida</topic><topic>Plant Stomata</topic><topic>Plants</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>signalling pathway</topic><topic>Stomata</topic><topic>Water</topic><topic>Water loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sussmilch, Frances C.</creatorcontrib><creatorcontrib>Schultz, Jörg</creatorcontrib><creatorcontrib>Hedrich, Rainer</creatorcontrib><creatorcontrib>Roelfsema, M. Rob G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sussmilch, Frances C.</au><au>Schultz, Jörg</au><au>Hedrich, Rainer</au><au>Roelfsema, M. Rob G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acquiring Control: The Evolution of Stomatal Signalling Pathways</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2019-04</date><risdate>2019</risdate><volume>24</volume><issue>4</issue><spage>342</spage><epage>351</epage><pages>342-351</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>In vascular plants, stomata balance two opposing functions: they open to facilitate CO2 uptake and close to prevent excessive water loss. Here, we discuss the evolution of three major signalling pathways that are known to control stomatal movements in angiosperms in response to light, CO2, and abscisic acid (ABA). We examine the evolutionary origins of key signalling genes involved in these pathways, and compare their expression patterns between an angiosperm and moss. We propose that variation in stomatal sensitivity to stimuli between plant groups are rooted in differences in: (i) gene presence/absence, (ii) specificity of gene spatial expression pattern, and (iii) protein characteristics and functional interactions.
Recent findings reveal that stomata function differently in mosses and hornworts than in vascular plants, with bryophyte stomata promoting rather than preventing water loss.
Important signalling genes that control stomatal opening and closure in response to changes in a plant’s environment have been characterised in angiosperms.
Less is known about the evolutionary origins of these signalling pathways, and whether or not they are also present in bryophytes.
Here, we review recent findings in this field, and further examine the evolutionary origins and expression patterns of key signalling genes, using newly available plant genomic and transcriptomic resources.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30797685</pmid><doi>10.1016/j.tplants.2019.01.002</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1360-1385 |
ispartof | Trends in plant science, 2019-04, Vol.24 (4), p.342-351 |
issn | 1360-1385 1878-4372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2185872116 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Abscisic Acid abscisic acid (ABA) Angiosperms Biological evolution Carbon dioxide CO2 Evolution Gene expression light Magnoliopsida Plant Stomata Plants Proteins Signal transduction Signaling signalling pathway Stomata Water Water loss |
title | Acquiring Control: The Evolution of Stomatal Signalling Pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acquiring%20Control:%20The%20Evolution%20of%20Stomatal%20Signalling%20Pathways&rft.jtitle=Trends%20in%20plant%20science&rft.au=Sussmilch,%20Frances%20C.&rft.date=2019-04&rft.volume=24&rft.issue=4&rft.spage=342&rft.epage=351&rft.pages=342-351&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2019.01.002&rft_dat=%3Cproquest_cross%3E2212702956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212702956&rft_id=info:pmid/30797685&rft_els_id=S1360138519300147&rfr_iscdi=true |