Conformator: A Novel Method for the Generation of Conformer Ensembles
Computer-aided drug design methods such as docking, pharmacophore searching, 3D database searching, and the creation of 3D-QSAR models need conformational ensembles to handle the flexibility of small molecules. Here, we present Conformator, an accurate and effective knowledge-based algorithm for gen...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2019-02, Vol.59 (2), p.731-742 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 742 |
---|---|
container_issue | 2 |
container_start_page | 731 |
container_title | Journal of chemical information and modeling |
container_volume | 59 |
creator | Friedrich, Nils-Ole Flachsenberg, Florian Meyder, Agnes Sommer, Kai Kirchmair, Johannes Rarey, Matthias |
description | Computer-aided drug design methods such as docking, pharmacophore searching, 3D database searching, and the creation of 3D-QSAR models need conformational ensembles to handle the flexibility of small molecules. Here, we present Conformator, an accurate and effective knowledge-based algorithm for generating conformer ensembles. With 99.9% of all test molecules processed, Conformator stands out by its robustness with respect to input formats, molecular geometries, and the handling of macrocycles. With an extended set of rules for sampling torsion angles, a novel algorithm for macrocycle conformer generation, and a new clustering algorithm for the assembly of conformer ensembles, Conformator reaches a median minimum root-mean-square deviation (measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers) of 0.47 Å with no significant difference to the highest-ranked commercial algorithm OMEGA and significantly higher accuracy than seven free algorithms, including the RDKit DG algorithm. Conformator is freely available for noncommercial use and academic research. |
doi_str_mv | 10.1021/acs.jcim.8b00704 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2185871646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216267529</sourcerecordid><originalsourceid>FETCH-LOGICAL-a472t-c76e358cea4ee04b1fc0a84795713087252d57fee5a9f7e80d04c87bb4ce244b3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoTqd3TxLw4sHOlzRpWm9jzClMvSh4C2n2yjraZiat4H9v5zYPgqc8yPf7vcdHyAWDEQPObo0No5Ut61GaAygQB-SESZFFWQLvh_tZZsmAnIawAojjLOHHZBCDEkrGcEKmE9cUztemdf6Ojumz-8SKPmG7dAvaf9B2iXSGDXrTlq6hrqC7BHo6bQLWeYXhjBwVpgp4vnuH5O1--jp5iOYvs8fJeB4ZoXgbWZVgLFOLRiCCyFlhwaRCZVKxGFLFJV9IVSBKkxUKU1iAsKnKc2GRC5HHQ3K97V1799FhaHVdBotVZRp0XdCcpTJVLBFJj179QVeu801_neacJTxRkmc9BVvKeheCx0KvfVkb_6UZ6I1i3SvWG8V6p7iPXO6Ku7zGxW9g77QHbrbAT3S_9N--bxdyhi8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216267529</pqid></control><display><type>article</type><title>Conformator: A Novel Method for the Generation of Conformer Ensembles</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Friedrich, Nils-Ole ; Flachsenberg, Florian ; Meyder, Agnes ; Sommer, Kai ; Kirchmair, Johannes ; Rarey, Matthias</creator><creatorcontrib>Friedrich, Nils-Ole ; Flachsenberg, Florian ; Meyder, Agnes ; Sommer, Kai ; Kirchmair, Johannes ; Rarey, Matthias</creatorcontrib><description>Computer-aided drug design methods such as docking, pharmacophore searching, 3D database searching, and the creation of 3D-QSAR models need conformational ensembles to handle the flexibility of small molecules. Here, we present Conformator, an accurate and effective knowledge-based algorithm for generating conformer ensembles. With 99.9% of all test molecules processed, Conformator stands out by its robustness with respect to input formats, molecular geometries, and the handling of macrocycles. With an extended set of rules for sampling torsion angles, a novel algorithm for macrocycle conformer generation, and a new clustering algorithm for the assembly of conformer ensembles, Conformator reaches a median minimum root-mean-square deviation (measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers) of 0.47 Å with no significant difference to the highest-ranked commercial algorithm OMEGA and significantly higher accuracy than seven free algorithms, including the RDKit DG algorithm. Conformator is freely available for noncommercial use and academic research.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.8b00704</identifier><identifier>PMID: 30747530</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Angles (geometry) ; CAD ; Cluster Analysis ; Clustering ; Computer aided design ; Docking ; Drug Design ; Macrocyclic Compounds - chemistry ; Models, Molecular ; Molecular Conformation ; Pharmacology ; Proteins ; Quantitative Structure-Activity Relationship ; Searching ; Three dimensional models ; Time Factors</subject><ispartof>Journal of chemical information and modeling, 2019-02, Vol.59 (2), p.731-742</ispartof><rights>Copyright American Chemical Society Feb 25, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a472t-c76e358cea4ee04b1fc0a84795713087252d57fee5a9f7e80d04c87bb4ce244b3</citedby><cites>FETCH-LOGICAL-a472t-c76e358cea4ee04b1fc0a84795713087252d57fee5a9f7e80d04c87bb4ce244b3</cites><orcidid>0000-0003-2667-5877 ; 0000-0002-8983-388X ; 0000-0002-9553-6531 ; 0000-0001-8519-5780 ; 0000-0001-7051-8719 ; 0000-0003-1866-8247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.8b00704$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.8b00704$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30747530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friedrich, Nils-Ole</creatorcontrib><creatorcontrib>Flachsenberg, Florian</creatorcontrib><creatorcontrib>Meyder, Agnes</creatorcontrib><creatorcontrib>Sommer, Kai</creatorcontrib><creatorcontrib>Kirchmair, Johannes</creatorcontrib><creatorcontrib>Rarey, Matthias</creatorcontrib><title>Conformator: A Novel Method for the Generation of Conformer Ensembles</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Computer-aided drug design methods such as docking, pharmacophore searching, 3D database searching, and the creation of 3D-QSAR models need conformational ensembles to handle the flexibility of small molecules. Here, we present Conformator, an accurate and effective knowledge-based algorithm for generating conformer ensembles. With 99.9% of all test molecules processed, Conformator stands out by its robustness with respect to input formats, molecular geometries, and the handling of macrocycles. With an extended set of rules for sampling torsion angles, a novel algorithm for macrocycle conformer generation, and a new clustering algorithm for the assembly of conformer ensembles, Conformator reaches a median minimum root-mean-square deviation (measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers) of 0.47 Å with no significant difference to the highest-ranked commercial algorithm OMEGA and significantly higher accuracy than seven free algorithms, including the RDKit DG algorithm. Conformator is freely available for noncommercial use and academic research.</description><subject>Algorithms</subject><subject>Angles (geometry)</subject><subject>CAD</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Computer aided design</subject><subject>Docking</subject><subject>Drug Design</subject><subject>Macrocyclic Compounds - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Pharmacology</subject><subject>Proteins</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Searching</subject><subject>Three dimensional models</subject><subject>Time Factors</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFLwzAUh4MoTqd3TxLw4sHOlzRpWm9jzClMvSh4C2n2yjraZiat4H9v5zYPgqc8yPf7vcdHyAWDEQPObo0No5Ut61GaAygQB-SESZFFWQLvh_tZZsmAnIawAojjLOHHZBCDEkrGcEKmE9cUztemdf6Ojumz-8SKPmG7dAvaf9B2iXSGDXrTlq6hrqC7BHo6bQLWeYXhjBwVpgp4vnuH5O1--jp5iOYvs8fJeB4ZoXgbWZVgLFOLRiCCyFlhwaRCZVKxGFLFJV9IVSBKkxUKU1iAsKnKc2GRC5HHQ3K97V1799FhaHVdBotVZRp0XdCcpTJVLBFJj179QVeu801_neacJTxRkmc9BVvKeheCx0KvfVkb_6UZ6I1i3SvWG8V6p7iPXO6Ku7zGxW9g77QHbrbAT3S_9N--bxdyhi8</recordid><startdate>20190225</startdate><enddate>20190225</enddate><creator>Friedrich, Nils-Ole</creator><creator>Flachsenberg, Florian</creator><creator>Meyder, Agnes</creator><creator>Sommer, Kai</creator><creator>Kirchmair, Johannes</creator><creator>Rarey, Matthias</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2667-5877</orcidid><orcidid>https://orcid.org/0000-0002-8983-388X</orcidid><orcidid>https://orcid.org/0000-0002-9553-6531</orcidid><orcidid>https://orcid.org/0000-0001-8519-5780</orcidid><orcidid>https://orcid.org/0000-0001-7051-8719</orcidid><orcidid>https://orcid.org/0000-0003-1866-8247</orcidid></search><sort><creationdate>20190225</creationdate><title>Conformator: A Novel Method for the Generation of Conformer Ensembles</title><author>Friedrich, Nils-Ole ; Flachsenberg, Florian ; Meyder, Agnes ; Sommer, Kai ; Kirchmair, Johannes ; Rarey, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a472t-c76e358cea4ee04b1fc0a84795713087252d57fee5a9f7e80d04c87bb4ce244b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Angles (geometry)</topic><topic>CAD</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Computer aided design</topic><topic>Docking</topic><topic>Drug Design</topic><topic>Macrocyclic Compounds - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Pharmacology</topic><topic>Proteins</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Searching</topic><topic>Three dimensional models</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedrich, Nils-Ole</creatorcontrib><creatorcontrib>Flachsenberg, Florian</creatorcontrib><creatorcontrib>Meyder, Agnes</creatorcontrib><creatorcontrib>Sommer, Kai</creatorcontrib><creatorcontrib>Kirchmair, Johannes</creatorcontrib><creatorcontrib>Rarey, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedrich, Nils-Ole</au><au>Flachsenberg, Florian</au><au>Meyder, Agnes</au><au>Sommer, Kai</au><au>Kirchmair, Johannes</au><au>Rarey, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformator: A Novel Method for the Generation of Conformer Ensembles</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2019-02-25</date><risdate>2019</risdate><volume>59</volume><issue>2</issue><spage>731</spage><epage>742</epage><pages>731-742</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Computer-aided drug design methods such as docking, pharmacophore searching, 3D database searching, and the creation of 3D-QSAR models need conformational ensembles to handle the flexibility of small molecules. Here, we present Conformator, an accurate and effective knowledge-based algorithm for generating conformer ensembles. With 99.9% of all test molecules processed, Conformator stands out by its robustness with respect to input formats, molecular geometries, and the handling of macrocycles. With an extended set of rules for sampling torsion angles, a novel algorithm for macrocycle conformer generation, and a new clustering algorithm for the assembly of conformer ensembles, Conformator reaches a median minimum root-mean-square deviation (measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers) of 0.47 Å with no significant difference to the highest-ranked commercial algorithm OMEGA and significantly higher accuracy than seven free algorithms, including the RDKit DG algorithm. Conformator is freely available for noncommercial use and academic research.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30747530</pmid><doi>10.1021/acs.jcim.8b00704</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2667-5877</orcidid><orcidid>https://orcid.org/0000-0002-8983-388X</orcidid><orcidid>https://orcid.org/0000-0002-9553-6531</orcidid><orcidid>https://orcid.org/0000-0001-8519-5780</orcidid><orcidid>https://orcid.org/0000-0001-7051-8719</orcidid><orcidid>https://orcid.org/0000-0003-1866-8247</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2019-02, Vol.59 (2), p.731-742 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2185871646 |
source | MEDLINE; American Chemical Society Journals |
subjects | Algorithms Angles (geometry) CAD Cluster Analysis Clustering Computer aided design Docking Drug Design Macrocyclic Compounds - chemistry Models, Molecular Molecular Conformation Pharmacology Proteins Quantitative Structure-Activity Relationship Searching Three dimensional models Time Factors |
title | Conformator: A Novel Method for the Generation of Conformer Ensembles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformator:%20A%20Novel%20Method%20for%20the%20Generation%20of%20Conformer%20Ensembles&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Friedrich,%20Nils-Ole&rft.date=2019-02-25&rft.volume=59&rft.issue=2&rft.spage=731&rft.epage=742&rft.pages=731-742&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.8b00704&rft_dat=%3Cproquest_cross%3E2216267529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216267529&rft_id=info:pmid/30747530&rfr_iscdi=true |