An IS26 variant with enhanced activity
The insertion sequence IS26 plays a major role in the mobilization, expression and dissemination of antibiotic resistance genes in Gram-negative bacteria. Though IS26 is abundant in sequenced genomes and in plasmids that harbour antibiotic resistance genes, only a few minor variations in the IS26 se...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology letters 2019-02, Vol.366 (3), p.1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | FEMS microbiology letters |
container_volume | 366 |
creator | Pong, Carol H Harmer, Christopher J Ataide, Sandro F Hall, Ruth M |
description | The insertion sequence IS26 plays a major role in the mobilization, expression and dissemination of antibiotic resistance genes in Gram-negative bacteria. Though IS26 is abundant in sequenced genomes and in plasmids that harbour antibiotic resistance genes, only a few minor variations in the IS26 sequence have been recorded. The most common variant, IS26* (also known as IS15Δ1), encodes a Tnp26 transposase with a single amino acid substitution, G184N in the catalytic domain. Using computational modelling, this substitution was predicted to increase the length of the helix that includes the E173 residue of the catalytic DDE triad, and its effect on activity was tested. An IS26 mutant generated in vitro producing Tnp26-G184N formed cointegrates in a standard untargeted reaction at 5-fold higher frequency than IS26 producing Tnp26. When the target included a single copy of IS26, the G184N substitution increased the cointegration frequency 10-fold and the reaction was targeted and conservative. Hence, the substitution increased Tnp26 activity. The longer helix may stabilise the position of the E173 of the DDE for the catalysis reaction and the specific G184N substitution may also enhance activity by increasing binding to the terminal inverted repeats. |
doi_str_mv | 10.1093/femsle/fnz031 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2185558584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A690688889</galeid><sourcerecordid>A690688889</sourcerecordid><originalsourceid>FETCH-LOGICAL-g340t-f9f57853c098995b7a14489589f88bb335e31489e8eb0807ba86c6dc9ea21453</originalsourceid><addsrcrecordid>eNptkc1Lw0AQxRdRbK0evUpAED2k3WQ_snssxY9CQbC9h00yabckm5rdVOtf74oVqThzGHj83uPBIHQZ4WGEJRmVUNsKRqX5wCQ6Qv2IJTTkkotj1MckEaGnkh46s3aNMaYx5qeoR3DCCCWsj27GJpjOYx5sVauVccGbdqsAzEqZHIpA5U5vtdudo5NSVRYu9neAFg_3i8lTOHt-nE7Gs3BJKHZhKUuWCEZyLIWULEtURKmQTMhSiCwjhAGJvAACMixwkinBc17kElQcUUYG6PY7dtM2rx1Yl9ba5lBVykDT2TSOBGNMMEE9ev0HXTdda3y5NCbST8w5-aWWqoJUm7Jxrcq_QtMxl5gLP9JTw38ovwXUOm8MlNrrB4a7A4NnHLy7peqsTafzl0P2al-0y2oo0k2ra9Xu0p8fkE_BL4OB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399992663</pqid></control><display><type>article</type><title>An IS26 variant with enhanced activity</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Pong, Carol H ; Harmer, Christopher J ; Ataide, Sandro F ; Hall, Ruth M</creator><creatorcontrib>Pong, Carol H ; Harmer, Christopher J ; Ataide, Sandro F ; Hall, Ruth M</creatorcontrib><description>The insertion sequence IS26 plays a major role in the mobilization, expression and dissemination of antibiotic resistance genes in Gram-negative bacteria. Though IS26 is abundant in sequenced genomes and in plasmids that harbour antibiotic resistance genes, only a few minor variations in the IS26 sequence have been recorded. The most common variant, IS26* (also known as IS15Δ1), encodes a Tnp26 transposase with a single amino acid substitution, G184N in the catalytic domain. Using computational modelling, this substitution was predicted to increase the length of the helix that includes the E173 residue of the catalytic DDE triad, and its effect on activity was tested. An IS26 mutant generated in vitro producing Tnp26-G184N formed cointegrates in a standard untargeted reaction at 5-fold higher frequency than IS26 producing Tnp26. When the target included a single copy of IS26, the G184N substitution increased the cointegration frequency 10-fold and the reaction was targeted and conservative. Hence, the substitution increased Tnp26 activity. The longer helix may stabilise the position of the E173 of the DDE for the catalysis reaction and the specific G184N substitution may also enhance activity by increasing binding to the terminal inverted repeats.</description><identifier>ISSN: 0378-1097</identifier><identifier>EISSN: 1574-6968</identifier><identifier>DOI: 10.1093/femsle/fnz031</identifier><identifier>PMID: 30753435</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino acid substitution ; Amino acids ; Antibiotic resistance ; Antibiotics ; Bacteria ; Catalysis ; Computer applications ; Computer simulation ; Computer-generated environments ; DDE ; Drug resistance ; Gene expression ; Genes ; Genomes ; Gram-negative bacteria ; Identification and classification ; Methods ; Microbiology ; Nitrous oxide ; Plasmids ; Substitution reactions ; Transposase ; Transposons</subject><ispartof>FEMS microbiology letters, 2019-02, Vol.366 (3), p.1</ispartof><rights>FEMS 2019.</rights><rights>COPYRIGHT 2019 Oxford University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30753435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pong, Carol H</creatorcontrib><creatorcontrib>Harmer, Christopher J</creatorcontrib><creatorcontrib>Ataide, Sandro F</creatorcontrib><creatorcontrib>Hall, Ruth M</creatorcontrib><title>An IS26 variant with enhanced activity</title><title>FEMS microbiology letters</title><addtitle>FEMS Microbiol Lett</addtitle><description>The insertion sequence IS26 plays a major role in the mobilization, expression and dissemination of antibiotic resistance genes in Gram-negative bacteria. Though IS26 is abundant in sequenced genomes and in plasmids that harbour antibiotic resistance genes, only a few minor variations in the IS26 sequence have been recorded. The most common variant, IS26* (also known as IS15Δ1), encodes a Tnp26 transposase with a single amino acid substitution, G184N in the catalytic domain. Using computational modelling, this substitution was predicted to increase the length of the helix that includes the E173 residue of the catalytic DDE triad, and its effect on activity was tested. An IS26 mutant generated in vitro producing Tnp26-G184N formed cointegrates in a standard untargeted reaction at 5-fold higher frequency than IS26 producing Tnp26. When the target included a single copy of IS26, the G184N substitution increased the cointegration frequency 10-fold and the reaction was targeted and conservative. Hence, the substitution increased Tnp26 activity. The longer helix may stabilise the position of the E173 of the DDE for the catalysis reaction and the specific G184N substitution may also enhance activity by increasing binding to the terminal inverted repeats.</description><subject>Amino acid substitution</subject><subject>Amino acids</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Catalysis</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>DDE</subject><subject>Drug resistance</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Gram-negative bacteria</subject><subject>Identification and classification</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Nitrous oxide</subject><subject>Plasmids</subject><subject>Substitution reactions</subject><subject>Transposase</subject><subject>Transposons</subject><issn>0378-1097</issn><issn>1574-6968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkc1Lw0AQxRdRbK0evUpAED2k3WQ_snssxY9CQbC9h00yabckm5rdVOtf74oVqThzGHj83uPBIHQZ4WGEJRmVUNsKRqX5wCQ6Qv2IJTTkkotj1MckEaGnkh46s3aNMaYx5qeoR3DCCCWsj27GJpjOYx5sVauVccGbdqsAzEqZHIpA5U5vtdudo5NSVRYu9neAFg_3i8lTOHt-nE7Gs3BJKHZhKUuWCEZyLIWULEtURKmQTMhSiCwjhAGJvAACMixwkinBc17kElQcUUYG6PY7dtM2rx1Yl9ba5lBVykDT2TSOBGNMMEE9ev0HXTdda3y5NCbST8w5-aWWqoJUm7Jxrcq_QtMxl5gLP9JTw38ovwXUOm8MlNrrB4a7A4NnHLy7peqsTafzl0P2al-0y2oo0k2ra9Xu0p8fkE_BL4OB</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Pong, Carol H</creator><creator>Harmer, Christopher J</creator><creator>Ataide, Sandro F</creator><creator>Hall, Ruth M</creator><general>Oxford University Press</general><scope>NPM</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190201</creationdate><title>An IS26 variant with enhanced activity</title><author>Pong, Carol H ; Harmer, Christopher J ; Ataide, Sandro F ; Hall, Ruth M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g340t-f9f57853c098995b7a14489589f88bb335e31489e8eb0807ba86c6dc9ea21453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acid substitution</topic><topic>Amino acids</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Catalysis</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>DDE</topic><topic>Drug resistance</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Gram-negative bacteria</topic><topic>Identification and classification</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Nitrous oxide</topic><topic>Plasmids</topic><topic>Substitution reactions</topic><topic>Transposase</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pong, Carol H</creatorcontrib><creatorcontrib>Harmer, Christopher J</creatorcontrib><creatorcontrib>Ataide, Sandro F</creatorcontrib><creatorcontrib>Hall, Ruth M</creatorcontrib><collection>PubMed</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pong, Carol H</au><au>Harmer, Christopher J</au><au>Ataide, Sandro F</au><au>Hall, Ruth M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An IS26 variant with enhanced activity</atitle><jtitle>FEMS microbiology letters</jtitle><addtitle>FEMS Microbiol Lett</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>366</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>0378-1097</issn><eissn>1574-6968</eissn><abstract>The insertion sequence IS26 plays a major role in the mobilization, expression and dissemination of antibiotic resistance genes in Gram-negative bacteria. Though IS26 is abundant in sequenced genomes and in plasmids that harbour antibiotic resistance genes, only a few minor variations in the IS26 sequence have been recorded. The most common variant, IS26* (also known as IS15Δ1), encodes a Tnp26 transposase with a single amino acid substitution, G184N in the catalytic domain. Using computational modelling, this substitution was predicted to increase the length of the helix that includes the E173 residue of the catalytic DDE triad, and its effect on activity was tested. An IS26 mutant generated in vitro producing Tnp26-G184N formed cointegrates in a standard untargeted reaction at 5-fold higher frequency than IS26 producing Tnp26. When the target included a single copy of IS26, the G184N substitution increased the cointegration frequency 10-fold and the reaction was targeted and conservative. Hence, the substitution increased Tnp26 activity. The longer helix may stabilise the position of the E173 of the DDE for the catalysis reaction and the specific G184N substitution may also enhance activity by increasing binding to the terminal inverted repeats.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30753435</pmid><doi>10.1093/femsle/fnz031</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-1097 |
ispartof | FEMS microbiology letters, 2019-02, Vol.366 (3), p.1 |
issn | 0378-1097 1574-6968 |
language | eng |
recordid | cdi_proquest_miscellaneous_2185558584 |
source | Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Amino acid substitution Amino acids Antibiotic resistance Antibiotics Bacteria Catalysis Computer applications Computer simulation Computer-generated environments DDE Drug resistance Gene expression Genes Genomes Gram-negative bacteria Identification and classification Methods Microbiology Nitrous oxide Plasmids Substitution reactions Transposase Transposons |
title | An IS26 variant with enhanced activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20IS26%20variant%20with%20enhanced%20activity&rft.jtitle=FEMS%20microbiology%20letters&rft.au=Pong,%20Carol%20H&rft.date=2019-02-01&rft.volume=366&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=0378-1097&rft.eissn=1574-6968&rft_id=info:doi/10.1093/femsle/fnz031&rft_dat=%3Cgale_proqu%3EA690688889%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399992663&rft_id=info:pmid/30753435&rft_galeid=A690688889&rfr_iscdi=true |