Semisupervised Discriminant Multimanifold Analysis for Action Recognition

Although recent semisupervised approaches have proven their effectiveness when there are limited training data, they assume that the samples from different actions lie on a single data manifold in the feature space and try to uncover a common subspace for all samples. However, this assumption ignore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2019-10, Vol.30 (10), p.2951-2962
Hauptverfasser: Xu, Zengmin, Hu, Ruimin, Chen, Jun, Chen, Chen, Jiang, Junjun, Li, Jiaofen, Li, Hongyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2962
container_issue 10
container_start_page 2951
container_title IEEE transaction on neural networks and learning systems
container_volume 30
creator Xu, Zengmin
Hu, Ruimin
Chen, Jun
Chen, Chen
Jiang, Junjun
Li, Jiaofen
Li, Hongyang
description Although recent semisupervised approaches have proven their effectiveness when there are limited training data, they assume that the samples from different actions lie on a single data manifold in the feature space and try to uncover a common subspace for all samples. However, this assumption ignores the intraclass compactness and the interclass separability simultaneously. We believe that human actions should occupy multimanifold subspace and, therefore, model the samples of the same action as the same manifold and those of different actions as different manifolds. In order to obtain the optimum subspace projection matrix, the current approaches may be mathematically imprecise owe to the badly scaled matrix and improper convergence. To address these issues in unconstrained convex optimization, we introduce a nontrivial spectral projected gradient method and Karush-Kuhn-Tucker conditions without matrix inversion. Through maximizing the separability between different classes by using labeled data points and estimating the intrinsic geometric structure of the data distributions by exploring unlabeled data points, the proposed algorithm can learn global and local consistency and boost the recognition performance. Extensive experiments conducted on the realistic video data sets, including JHMDB, HMDB51, UCF50, and UCF101, have demonstrated that our algorithm outperforms the compared algorithms, including deep learning approach when there are only a few labeled samples.
doi_str_mv 10.1109/TNNLS.2018.2886008
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2185555678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8641437</ieee_id><sourcerecordid>2185555678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-793a76fbaa53115a2a035b3c627d53cead94b10170a9c34bb357cff087de6f4f3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMottT-AQVZ8OJlaz42H3ss9atQK9gK3pZsNpGU7aYmu0L_vamtPTiXGZhnBt4HgEsERwjB_G45n88WIwyRGGEhGITiBPQxYjjFRIjT48w_emAYwgrGYpCyLD8HPQI5w5SJPpgu9NqGbqP9tw26Su5tUN6ubSObNnnp6tauZWONq6tk3Mh6G2xIjPPJWLXWNcmbVu6zsbv5ApwZWQc9PPQBeH98WE6e09nr03QynqWKUNSmPCeSM1NKSQlCVGIJCS2JYphXlCgtqzwrEUQcylyRrCwJ5coYKHilmckMGYDb_d-Nd1-dDm0RAyhd17LRrgsFRoLGYlxE9OYfunKdjzEihXOSc5HBLFJ4TynvQvDaFJtoQPptgWCxc138ui52rouD63h0fXjdlWtdHU_-zEbgag9YrfVxLViGMsLJD2xogus</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293978404</pqid></control><display><type>article</type><title>Semisupervised Discriminant Multimanifold Analysis for Action Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Zengmin ; Hu, Ruimin ; Chen, Jun ; Chen, Chen ; Jiang, Junjun ; Li, Jiaofen ; Li, Hongyang</creator><creatorcontrib>Xu, Zengmin ; Hu, Ruimin ; Chen, Jun ; Chen, Chen ; Jiang, Junjun ; Li, Jiaofen ; Li, Hongyang</creatorcontrib><description>Although recent semisupervised approaches have proven their effectiveness when there are limited training data, they assume that the samples from different actions lie on a single data manifold in the feature space and try to uncover a common subspace for all samples. However, this assumption ignores the intraclass compactness and the interclass separability simultaneously. We believe that human actions should occupy multimanifold subspace and, therefore, model the samples of the same action as the same manifold and those of different actions as different manifolds. In order to obtain the optimum subspace projection matrix, the current approaches may be mathematically imprecise owe to the badly scaled matrix and improper convergence. To address these issues in unconstrained convex optimization, we introduce a nontrivial spectral projected gradient method and Karush-Kuhn-Tucker conditions without matrix inversion. Through maximizing the separability between different classes by using labeled data points and estimating the intrinsic geometric structure of the data distributions by exploring unlabeled data points, the proposed algorithm can learn global and local consistency and boost the recognition performance. Extensive experiments conducted on the realistic video data sets, including JHMDB, HMDB51, UCF50, and UCF101, have demonstrated that our algorithm outperforms the compared algorithms, including deep learning approach when there are only a few labeled samples.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2886008</identifier><identifier>PMID: 30762568</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computational geometry ; Convergence ; Convexity ; Correlation ; Data points ; Deep learning ; Discriminant analysis ; Karush–Kuhn–Tucker (KKT) conditions ; Kuhn-Tucker method ; Machine learning ; manifold learning ; Manifolds ; Manifolds (mathematics) ; Mathematical analysis ; Matrix methods ; Multimedia communication ; Optimization ; Recognition ; Semisupervised learning ; spectral projected gradient (SPG) ; Subspaces ; Training data ; Video data</subject><ispartof>IEEE transaction on neural networks and learning systems, 2019-10, Vol.30 (10), p.2951-2962</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-793a76fbaa53115a2a035b3c627d53cead94b10170a9c34bb357cff087de6f4f3</citedby><cites>FETCH-LOGICAL-c351t-793a76fbaa53115a2a035b3c627d53cead94b10170a9c34bb357cff087de6f4f3</cites><orcidid>0000-0002-5694-505X ; 0000-0003-3957-7061 ; 0000-0002-8934-9027 ; 0000-0002-0290-5757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8641437$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8641437$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30762568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Zengmin</creatorcontrib><creatorcontrib>Hu, Ruimin</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Jiang, Junjun</creatorcontrib><creatorcontrib>Li, Jiaofen</creatorcontrib><creatorcontrib>Li, Hongyang</creatorcontrib><title>Semisupervised Discriminant Multimanifold Analysis for Action Recognition</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Although recent semisupervised approaches have proven their effectiveness when there are limited training data, they assume that the samples from different actions lie on a single data manifold in the feature space and try to uncover a common subspace for all samples. However, this assumption ignores the intraclass compactness and the interclass separability simultaneously. We believe that human actions should occupy multimanifold subspace and, therefore, model the samples of the same action as the same manifold and those of different actions as different manifolds. In order to obtain the optimum subspace projection matrix, the current approaches may be mathematically imprecise owe to the badly scaled matrix and improper convergence. To address these issues in unconstrained convex optimization, we introduce a nontrivial spectral projected gradient method and Karush-Kuhn-Tucker conditions without matrix inversion. Through maximizing the separability between different classes by using labeled data points and estimating the intrinsic geometric structure of the data distributions by exploring unlabeled data points, the proposed algorithm can learn global and local consistency and boost the recognition performance. Extensive experiments conducted on the realistic video data sets, including JHMDB, HMDB51, UCF50, and UCF101, have demonstrated that our algorithm outperforms the compared algorithms, including deep learning approach when there are only a few labeled samples.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Correlation</subject><subject>Data points</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Karush–Kuhn–Tucker (KKT) conditions</subject><subject>Kuhn-Tucker method</subject><subject>Machine learning</subject><subject>manifold learning</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Multimedia communication</subject><subject>Optimization</subject><subject>Recognition</subject><subject>Semisupervised learning</subject><subject>spectral projected gradient (SPG)</subject><subject>Subspaces</subject><subject>Training data</subject><subject>Video data</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMottT-AQVZ8OJlaz42H3ss9atQK9gK3pZsNpGU7aYmu0L_vamtPTiXGZhnBt4HgEsERwjB_G45n88WIwyRGGEhGITiBPQxYjjFRIjT48w_emAYwgrGYpCyLD8HPQI5w5SJPpgu9NqGbqP9tw26Su5tUN6ubSObNnnp6tauZWONq6tk3Mh6G2xIjPPJWLXWNcmbVu6zsbv5ApwZWQc9PPQBeH98WE6e09nr03QynqWKUNSmPCeSM1NKSQlCVGIJCS2JYphXlCgtqzwrEUQcylyRrCwJ5coYKHilmckMGYDb_d-Nd1-dDm0RAyhd17LRrgsFRoLGYlxE9OYfunKdjzEihXOSc5HBLFJ4TynvQvDaFJtoQPptgWCxc138ui52rouD63h0fXjdlWtdHU_-zEbgag9YrfVxLViGMsLJD2xogus</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Xu, Zengmin</creator><creator>Hu, Ruimin</creator><creator>Chen, Jun</creator><creator>Chen, Chen</creator><creator>Jiang, Junjun</creator><creator>Li, Jiaofen</creator><creator>Li, Hongyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5694-505X</orcidid><orcidid>https://orcid.org/0000-0003-3957-7061</orcidid><orcidid>https://orcid.org/0000-0002-8934-9027</orcidid><orcidid>https://orcid.org/0000-0002-0290-5757</orcidid></search><sort><creationdate>20191001</creationdate><title>Semisupervised Discriminant Multimanifold Analysis for Action Recognition</title><author>Xu, Zengmin ; Hu, Ruimin ; Chen, Jun ; Chen, Chen ; Jiang, Junjun ; Li, Jiaofen ; Li, Hongyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-793a76fbaa53115a2a035b3c627d53cead94b10170a9c34bb357cff087de6f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Correlation</topic><topic>Data points</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Karush–Kuhn–Tucker (KKT) conditions</topic><topic>Kuhn-Tucker method</topic><topic>Machine learning</topic><topic>manifold learning</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Multimedia communication</topic><topic>Optimization</topic><topic>Recognition</topic><topic>Semisupervised learning</topic><topic>spectral projected gradient (SPG)</topic><topic>Subspaces</topic><topic>Training data</topic><topic>Video data</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zengmin</creatorcontrib><creatorcontrib>Hu, Ruimin</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Jiang, Junjun</creatorcontrib><creatorcontrib>Li, Jiaofen</creatorcontrib><creatorcontrib>Li, Hongyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Zengmin</au><au>Hu, Ruimin</au><au>Chen, Jun</au><au>Chen, Chen</au><au>Jiang, Junjun</au><au>Li, Jiaofen</au><au>Li, Hongyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semisupervised Discriminant Multimanifold Analysis for Action Recognition</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>30</volume><issue>10</issue><spage>2951</spage><epage>2962</epage><pages>2951-2962</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Although recent semisupervised approaches have proven their effectiveness when there are limited training data, they assume that the samples from different actions lie on a single data manifold in the feature space and try to uncover a common subspace for all samples. However, this assumption ignores the intraclass compactness and the interclass separability simultaneously. We believe that human actions should occupy multimanifold subspace and, therefore, model the samples of the same action as the same manifold and those of different actions as different manifolds. In order to obtain the optimum subspace projection matrix, the current approaches may be mathematically imprecise owe to the badly scaled matrix and improper convergence. To address these issues in unconstrained convex optimization, we introduce a nontrivial spectral projected gradient method and Karush-Kuhn-Tucker conditions without matrix inversion. Through maximizing the separability between different classes by using labeled data points and estimating the intrinsic geometric structure of the data distributions by exploring unlabeled data points, the proposed algorithm can learn global and local consistency and boost the recognition performance. Extensive experiments conducted on the realistic video data sets, including JHMDB, HMDB51, UCF50, and UCF101, have demonstrated that our algorithm outperforms the compared algorithms, including deep learning approach when there are only a few labeled samples.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30762568</pmid><doi>10.1109/TNNLS.2018.2886008</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5694-505X</orcidid><orcidid>https://orcid.org/0000-0003-3957-7061</orcidid><orcidid>https://orcid.org/0000-0002-8934-9027</orcidid><orcidid>https://orcid.org/0000-0002-0290-5757</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2019-10, Vol.30 (10), p.2951-2962
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2185555678
source IEEE Electronic Library (IEL)
subjects Algorithms
Computational geometry
Convergence
Convexity
Correlation
Data points
Deep learning
Discriminant analysis
Karush–Kuhn–Tucker (KKT) conditions
Kuhn-Tucker method
Machine learning
manifold learning
Manifolds
Manifolds (mathematics)
Mathematical analysis
Matrix methods
Multimedia communication
Optimization
Recognition
Semisupervised learning
spectral projected gradient (SPG)
Subspaces
Training data
Video data
title Semisupervised Discriminant Multimanifold Analysis for Action Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semisupervised%20Discriminant%20Multimanifold%20Analysis%20for%20Action%20Recognition&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Xu,%20Zengmin&rft.date=2019-10-01&rft.volume=30&rft.issue=10&rft.spage=2951&rft.epage=2962&rft.pages=2951-2962&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2018.2886008&rft_dat=%3Cproquest_RIE%3E2185555678%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2293978404&rft_id=info:pmid/30762568&rft_ieee_id=8641437&rfr_iscdi=true