Semisupervised Discriminant Multimanifold Analysis for Action Recognition
Although recent semisupervised approaches have proven their effectiveness when there are limited training data, they assume that the samples from different actions lie on a single data manifold in the feature space and try to uncover a common subspace for all samples. However, this assumption ignore...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2019-10, Vol.30 (10), p.2951-2962 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2962 |
---|---|
container_issue | 10 |
container_start_page | 2951 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 30 |
creator | Xu, Zengmin Hu, Ruimin Chen, Jun Chen, Chen Jiang, Junjun Li, Jiaofen Li, Hongyang |
description | Although recent semisupervised approaches have proven their effectiveness when there are limited training data, they assume that the samples from different actions lie on a single data manifold in the feature space and try to uncover a common subspace for all samples. However, this assumption ignores the intraclass compactness and the interclass separability simultaneously. We believe that human actions should occupy multimanifold subspace and, therefore, model the samples of the same action as the same manifold and those of different actions as different manifolds. In order to obtain the optimum subspace projection matrix, the current approaches may be mathematically imprecise owe to the badly scaled matrix and improper convergence. To address these issues in unconstrained convex optimization, we introduce a nontrivial spectral projected gradient method and Karush-Kuhn-Tucker conditions without matrix inversion. Through maximizing the separability between different classes by using labeled data points and estimating the intrinsic geometric structure of the data distributions by exploring unlabeled data points, the proposed algorithm can learn global and local consistency and boost the recognition performance. Extensive experiments conducted on the realistic video data sets, including JHMDB, HMDB51, UCF50, and UCF101, have demonstrated that our algorithm outperforms the compared algorithms, including deep learning approach when there are only a few labeled samples. |
doi_str_mv | 10.1109/TNNLS.2018.2886008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2185555678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8641437</ieee_id><sourcerecordid>2185555678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-793a76fbaa53115a2a035b3c627d53cead94b10170a9c34bb357cff087de6f4f3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMottT-AQVZ8OJlaz42H3ss9atQK9gK3pZsNpGU7aYmu0L_vamtPTiXGZhnBt4HgEsERwjB_G45n88WIwyRGGEhGITiBPQxYjjFRIjT48w_emAYwgrGYpCyLD8HPQI5w5SJPpgu9NqGbqP9tw26Su5tUN6ubSObNnnp6tauZWONq6tk3Mh6G2xIjPPJWLXWNcmbVu6zsbv5ApwZWQc9PPQBeH98WE6e09nr03QynqWKUNSmPCeSM1NKSQlCVGIJCS2JYphXlCgtqzwrEUQcylyRrCwJ5coYKHilmckMGYDb_d-Nd1-dDm0RAyhd17LRrgsFRoLGYlxE9OYfunKdjzEihXOSc5HBLFJ4TynvQvDaFJtoQPptgWCxc138ui52rouD63h0fXjdlWtdHU_-zEbgag9YrfVxLViGMsLJD2xogus</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293978404</pqid></control><display><type>article</type><title>Semisupervised Discriminant Multimanifold Analysis for Action Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Zengmin ; Hu, Ruimin ; Chen, Jun ; Chen, Chen ; Jiang, Junjun ; Li, Jiaofen ; Li, Hongyang</creator><creatorcontrib>Xu, Zengmin ; Hu, Ruimin ; Chen, Jun ; Chen, Chen ; Jiang, Junjun ; Li, Jiaofen ; Li, Hongyang</creatorcontrib><description>Although recent semisupervised approaches have proven their effectiveness when there are limited training data, they assume that the samples from different actions lie on a single data manifold in the feature space and try to uncover a common subspace for all samples. However, this assumption ignores the intraclass compactness and the interclass separability simultaneously. We believe that human actions should occupy multimanifold subspace and, therefore, model the samples of the same action as the same manifold and those of different actions as different manifolds. In order to obtain the optimum subspace projection matrix, the current approaches may be mathematically imprecise owe to the badly scaled matrix and improper convergence. To address these issues in unconstrained convex optimization, we introduce a nontrivial spectral projected gradient method and Karush-Kuhn-Tucker conditions without matrix inversion. Through maximizing the separability between different classes by using labeled data points and estimating the intrinsic geometric structure of the data distributions by exploring unlabeled data points, the proposed algorithm can learn global and local consistency and boost the recognition performance. Extensive experiments conducted on the realistic video data sets, including JHMDB, HMDB51, UCF50, and UCF101, have demonstrated that our algorithm outperforms the compared algorithms, including deep learning approach when there are only a few labeled samples.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2886008</identifier><identifier>PMID: 30762568</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computational geometry ; Convergence ; Convexity ; Correlation ; Data points ; Deep learning ; Discriminant analysis ; Karush–Kuhn–Tucker (KKT) conditions ; Kuhn-Tucker method ; Machine learning ; manifold learning ; Manifolds ; Manifolds (mathematics) ; Mathematical analysis ; Matrix methods ; Multimedia communication ; Optimization ; Recognition ; Semisupervised learning ; spectral projected gradient (SPG) ; Subspaces ; Training data ; Video data</subject><ispartof>IEEE transaction on neural networks and learning systems, 2019-10, Vol.30 (10), p.2951-2962</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-793a76fbaa53115a2a035b3c627d53cead94b10170a9c34bb357cff087de6f4f3</citedby><cites>FETCH-LOGICAL-c351t-793a76fbaa53115a2a035b3c627d53cead94b10170a9c34bb357cff087de6f4f3</cites><orcidid>0000-0002-5694-505X ; 0000-0003-3957-7061 ; 0000-0002-8934-9027 ; 0000-0002-0290-5757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8641437$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8641437$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30762568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Zengmin</creatorcontrib><creatorcontrib>Hu, Ruimin</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Jiang, Junjun</creatorcontrib><creatorcontrib>Li, Jiaofen</creatorcontrib><creatorcontrib>Li, Hongyang</creatorcontrib><title>Semisupervised Discriminant Multimanifold Analysis for Action Recognition</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Although recent semisupervised approaches have proven their effectiveness when there are limited training data, they assume that the samples from different actions lie on a single data manifold in the feature space and try to uncover a common subspace for all samples. However, this assumption ignores the intraclass compactness and the interclass separability simultaneously. We believe that human actions should occupy multimanifold subspace and, therefore, model the samples of the same action as the same manifold and those of different actions as different manifolds. In order to obtain the optimum subspace projection matrix, the current approaches may be mathematically imprecise owe to the badly scaled matrix and improper convergence. To address these issues in unconstrained convex optimization, we introduce a nontrivial spectral projected gradient method and Karush-Kuhn-Tucker conditions without matrix inversion. Through maximizing the separability between different classes by using labeled data points and estimating the intrinsic geometric structure of the data distributions by exploring unlabeled data points, the proposed algorithm can learn global and local consistency and boost the recognition performance. Extensive experiments conducted on the realistic video data sets, including JHMDB, HMDB51, UCF50, and UCF101, have demonstrated that our algorithm outperforms the compared algorithms, including deep learning approach when there are only a few labeled samples.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Correlation</subject><subject>Data points</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Karush–Kuhn–Tucker (KKT) conditions</subject><subject>Kuhn-Tucker method</subject><subject>Machine learning</subject><subject>manifold learning</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Multimedia communication</subject><subject>Optimization</subject><subject>Recognition</subject><subject>Semisupervised learning</subject><subject>spectral projected gradient (SPG)</subject><subject>Subspaces</subject><subject>Training data</subject><subject>Video data</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMottT-AQVZ8OJlaz42H3ss9atQK9gK3pZsNpGU7aYmu0L_vamtPTiXGZhnBt4HgEsERwjB_G45n88WIwyRGGEhGITiBPQxYjjFRIjT48w_emAYwgrGYpCyLD8HPQI5w5SJPpgu9NqGbqP9tw26Su5tUN6ubSObNnnp6tauZWONq6tk3Mh6G2xIjPPJWLXWNcmbVu6zsbv5ApwZWQc9PPQBeH98WE6e09nr03QynqWKUNSmPCeSM1NKSQlCVGIJCS2JYphXlCgtqzwrEUQcylyRrCwJ5coYKHilmckMGYDb_d-Nd1-dDm0RAyhd17LRrgsFRoLGYlxE9OYfunKdjzEihXOSc5HBLFJ4TynvQvDaFJtoQPptgWCxc138ui52rouD63h0fXjdlWtdHU_-zEbgag9YrfVxLViGMsLJD2xogus</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Xu, Zengmin</creator><creator>Hu, Ruimin</creator><creator>Chen, Jun</creator><creator>Chen, Chen</creator><creator>Jiang, Junjun</creator><creator>Li, Jiaofen</creator><creator>Li, Hongyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5694-505X</orcidid><orcidid>https://orcid.org/0000-0003-3957-7061</orcidid><orcidid>https://orcid.org/0000-0002-8934-9027</orcidid><orcidid>https://orcid.org/0000-0002-0290-5757</orcidid></search><sort><creationdate>20191001</creationdate><title>Semisupervised Discriminant Multimanifold Analysis for Action Recognition</title><author>Xu, Zengmin ; Hu, Ruimin ; Chen, Jun ; Chen, Chen ; Jiang, Junjun ; Li, Jiaofen ; Li, Hongyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-793a76fbaa53115a2a035b3c627d53cead94b10170a9c34bb357cff087de6f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Correlation</topic><topic>Data points</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Karush–Kuhn–Tucker (KKT) conditions</topic><topic>Kuhn-Tucker method</topic><topic>Machine learning</topic><topic>manifold learning</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Multimedia communication</topic><topic>Optimization</topic><topic>Recognition</topic><topic>Semisupervised learning</topic><topic>spectral projected gradient (SPG)</topic><topic>Subspaces</topic><topic>Training data</topic><topic>Video data</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zengmin</creatorcontrib><creatorcontrib>Hu, Ruimin</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Jiang, Junjun</creatorcontrib><creatorcontrib>Li, Jiaofen</creatorcontrib><creatorcontrib>Li, Hongyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Zengmin</au><au>Hu, Ruimin</au><au>Chen, Jun</au><au>Chen, Chen</au><au>Jiang, Junjun</au><au>Li, Jiaofen</au><au>Li, Hongyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semisupervised Discriminant Multimanifold Analysis for Action Recognition</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>30</volume><issue>10</issue><spage>2951</spage><epage>2962</epage><pages>2951-2962</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Although recent semisupervised approaches have proven their effectiveness when there are limited training data, they assume that the samples from different actions lie on a single data manifold in the feature space and try to uncover a common subspace for all samples. However, this assumption ignores the intraclass compactness and the interclass separability simultaneously. We believe that human actions should occupy multimanifold subspace and, therefore, model the samples of the same action as the same manifold and those of different actions as different manifolds. In order to obtain the optimum subspace projection matrix, the current approaches may be mathematically imprecise owe to the badly scaled matrix and improper convergence. To address these issues in unconstrained convex optimization, we introduce a nontrivial spectral projected gradient method and Karush-Kuhn-Tucker conditions without matrix inversion. Through maximizing the separability between different classes by using labeled data points and estimating the intrinsic geometric structure of the data distributions by exploring unlabeled data points, the proposed algorithm can learn global and local consistency and boost the recognition performance. Extensive experiments conducted on the realistic video data sets, including JHMDB, HMDB51, UCF50, and UCF101, have demonstrated that our algorithm outperforms the compared algorithms, including deep learning approach when there are only a few labeled samples.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30762568</pmid><doi>10.1109/TNNLS.2018.2886008</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5694-505X</orcidid><orcidid>https://orcid.org/0000-0003-3957-7061</orcidid><orcidid>https://orcid.org/0000-0002-8934-9027</orcidid><orcidid>https://orcid.org/0000-0002-0290-5757</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2019-10, Vol.30 (10), p.2951-2962 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2185555678 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computational geometry Convergence Convexity Correlation Data points Deep learning Discriminant analysis Karush–Kuhn–Tucker (KKT) conditions Kuhn-Tucker method Machine learning manifold learning Manifolds Manifolds (mathematics) Mathematical analysis Matrix methods Multimedia communication Optimization Recognition Semisupervised learning spectral projected gradient (SPG) Subspaces Training data Video data |
title | Semisupervised Discriminant Multimanifold Analysis for Action Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semisupervised%20Discriminant%20Multimanifold%20Analysis%20for%20Action%20Recognition&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Xu,%20Zengmin&rft.date=2019-10-01&rft.volume=30&rft.issue=10&rft.spage=2951&rft.epage=2962&rft.pages=2951-2962&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2018.2886008&rft_dat=%3Cproquest_RIE%3E2185555678%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2293978404&rft_id=info:pmid/30762568&rft_ieee_id=8641437&rfr_iscdi=true |